Опубликован: 17.07.2009 | Уровень: специалист | Доступ: платный
Лекция 4:

Методы принятия решений

< Лекция 3 || Лекция 4: 123456 || Лекция 5 >

Прямая (3) на рис. 4.4 - это прямая, соответствующая целевой функции 3,8 К + 4,2 С. Она проходит между прямыми (1) и (4), задающими ограничения, и минимум достигается в точке А, через которую и проходит прямая (3). Следовательно, минимум равен 3,8\times40/9 + 4, \times20/9 = 236/9. Задача об оптимизации смеси полностью решена.

Двойственная задача, построенная по описанным выше правилам, имеет приведенный ниже вид (мы повторяем здесь и исходную задачу об оптимизации смеси, чтобы наглядно продемонстрировать технологию построения двойственной задачи):

\begin{align*}3,8 К &+ 4,2 С \to min ,&			W_1 + 5 W_2 &+ 400 W_3 \to max \\
0,10 К &+ 0,25 С \ge 1,00 ,	&	0,1 W_1 + 1,10 W_2 &+ 110 W_3 \le 3,8 \\
1,00 К &+ 0,25 С \ge 5,00 ,	&	0,25W_1 + 0,25 W_2 &+ 120 W_3 \le 4,2 \\
 110,00 К &+ 120,00 С \ge 400,00 ,	&		W_1 &\ge 0 \\
К &\ge 0 ,	&				W_2 &\ge 0 \\
С &\ge 0 .	&				W_3 &\ge 0 .\end{align*}

Минимальное значение в прямой задаче, как и должно быть, равно максимальному значению в двойственной задаче, т.е. оба числа равны 236/9. Интерпретация двойственных переменных: W_1 - "стоимость" единицы вещества Т, а W_2 - "стоимость" единицы вещества Н, измеренные "по их вкладу" в целевую функцию. При этом W_3 = 0, поскольку ограничение на число калорий никак не участвует в формировании оптимального решения. Итак, W_1 , W_2 , W_3 - это т.н. объективно обусловленные оценки (по Л.В. Канторовичу) ресурсов (веществ Т и Н, калорий).

Планирование номенклатуры и объемов выпуска. Вернемся к организации производства. Предприятие может выпускать автоматические кухни (вид кастрюль), кофеварки и самовары. В табл.4.5 приведены данные о производственных мощностях, имеющихся на предприятии (в штуках изделий).

Таблица 4.5. Производственные мощности (в шт.)
Кухни Кофеварки Самовары
Штамповка 20000 30000 12000
Отделка 30000 10000 10000
Сборка 20000 12000 8000
Объем выпуска Х_1 Х_2 Х_3
Удельная прибыль (на одно изделие) 15 12 14

При этом штамповка и отделка проводятся на одном и том же оборудовании. Оно позволяет штамповать за заданное время или 20000 кухонь, либо 30000 кофеварок, либо и то, и другое, не в меньшем количестве. А вот сборка проводится на отдельных участках.

Задача линейного программирования имеет вид:

Х_1 \ge 0 , Х_2 \ge 0 , Х_3 \ge 0, ( 0)
Х_1 / 200 + Х_2 / 300 + Х_3 / 120 \le 100, ( 1)
Х_1 / 300 + Х_2 / 100 + Х_3 / 100 \le 100, ( 2)
Х_1 / 200 \le 100, ( 3)
Х_2 / 120 \le 100, ( 4)
Х_3 / 80 \le 100, ( 5)
F = 15 Х_1 + 12 Х_2 + 14 Х_3 \to max.

Здесь:

(0) - обычное в экономике условие неотрицательности переменных,

(1) - ограничение по возможностям штамповки (выраженное для облегчения восприятия в процентах),

(2) - ограничение по возможностям отделки,

(3) - ограничение по сборке для кухонь,

(4) - то же для кофемолок,

(5) - то же для самоваров (как уже говорилось, все три вида изделий собираются на отдельных линиях).

Наконец, целевая функция F - общая прибыль предприятия.

Заметим, что неравенство (3) вытекает из неравенства (1), а неравенство (4) - из (2). Поэтому неравенства (3) и (4) можно сразу отбросить.

Отметим сразу любопытный факт. Как будет установлено, в оптимальном плане Х_3 = 0 , т.е. самовары выпускать невыгодно.

Методы решения задач линейного программирования. Методы решения задач линейного программирования относятся к вычислительной математике, а не к экономике. Однако экономисту полезно знать о свойствах интеллектуального инструмента, которым он пользуется.

С ростом мощности компьютеров необходимость применения изощренных методов снижается, поскольку во многих случаях время счета перестает быть лимитирующим фактором, поскольку весьма мало (доли секунд). Поэтому мы разберем лишь три метода.

Простой перебор. Возьмем некоторый многомерный параллелепипед, в котором лежит многогранник, задаваемый ограничениями. Как его построить? Например, если имеется ограничение типа 2Х_1 + 5Х_2 \le 10, то, очевидно, 0 \le Х_1 \le 10/2 = 5 и 0 \le Х_2 \le 10/2 = 5 . Аналогичным образом от линейных ограничений общего вида можно перейти к ограничениям на отдельные переменные. Остается взять максимальные границы по каждой переменной. Если многогранник, задаваемый ограничениями, неограничен, как было в задаче о диете, можно похожим, но несколько более сложным образом выделить его "обращенную" к началу координат часть, содержащую решение, и заключить ее в многомерный параллелепипед.

Проведем перебор точек параллелепипеда с шагом 1/10^n последовательно при n=2,3,\dots, вычисляя значения целевой функции и проверяя наличие ограничений. Из всех точек, удовлетворяющих ограничениям, возьмем ту, в которой целевая функция максимальна. Решение найдено! (Более строго выражаясь, найдено с точностью до 1/10^n.)

Направленный перебор. Начнем с точки, удовлетворяющей ограничениям (ее можно найти простым перебором). Будем последовательно (или случайно - т.н. метод случайного поиска) менять ее координаты на определенную величину \Delta, каждый раз в точку с более высоким значением целевой функции. Если выйдем на плоскость ограничения, будем двигаться по ней (находя одну из координат по уравнению ограничения). Затем движение по ребру (когда два ограничения-неравенства переходят в равенства)… Остановка - в вершине линейного многогранника. Решение найдено! (Более строго выражаясь, найдено с точностью до \Delta ; если необходимо, в окрестности найденного решения проводим направленный перебор с шагом \Delta/2 , \Delta/4 и т.д.)

Симплекс-метод. Этот один из первых специализированных методов оптимизации, нацеленный на решение задач линейного программирования, в то время как методы простого и направленного перебора могут быть применены для решения практически любой задачи оптимизации. Он был предложен американцем Г. Данцигом в 1951 г. Симплекс-метод состоит в продвижении по выпуклому многограннику ограничений от вершины к вершине, при котором на каждом шаге значение целевой функции улучшается до тех пор, пока не будет достигнут оптимум..

Рассмотрим задачу линейного программирования, сформулированную выше при рассмотрении оптимизации номенклатуры и объемов выпуска:

F = 15 Х_1 + 12 Х_2 + 14 Х_3 \to max .\\
Х_1 / 200 + Х_2 / 300 + Х_3 / 120 \le 100 \\
Х_1 / 300 + Х_2 / 100 + Х_3 / 100 \le 100 \\
Х_3 / 80 \le 100 \\

Неотрицательность переменных не будем специально указывать, поскольку в задачах линейного программирования это предположение всегда принимается.

В соответствии с симплекс-методом введем т.н. "свободные переменные" Х_4 , Х_5 , Х_6 , соответствующие недоиспользованным мощностям, т.е. перейдем к системе уравнений:

Х_1 / 200 + Х_2 / 300 + Х_3 / 120 + Х_4 = 100 ,
Х_1 / 300 + Х_2 / 100 + Х_3 / 100 + Х_5 = 100 ,
Х_3 / 80 + Х_6 = 100 ,
15 Х_1 + 12 Х_2 + 14 Х_3 = F.

У этой системы имеется очевидное решение, соответствующее вершине многогранника допустимых значений переменных:

Х_1 = Х_2 = Х_3 = 0, Х_4 = Х_5 = Х_6 = 100, F = 0.

В терминах исходной задачи это значит, что ничего не надо выпускать. Такое решение приемлемо только на период летних отпусков.

Выбираем переменную, которая входит в целевую функцию F с самым большим положительным коэффициентом. Это Х_1.

Сравниваем частные от деления свободных членов в первых трех уравнениях на коэффициенты при только что выбранной переменной Х_1:

100 / (1/200) = 20000, 100 / (1/300) =30000, 100/0 = + \infty.

Выбираем строку, которой соответствует минимальное из всех положительных отношений. В рассматриваемом примере - это первая строка, которой соответствует отношение 20000.

Умножим первую строку на 200, чтобы получить Х_1 с единичным коэффициентом:

Х_1 + 2/3 Х_2 + 2/1,2 Х_3 + 200 Х_4 = 20000.

Затем умножим вновь полученную строку на (-1/300) и сложим со второй строкой, получим

7/900 Х_2 + 4/900 Х_3 - 2/3 Х_4 + Х_5 = 100/3.

Ту же преобразованную первую строку умножим на (-15) и сложим со строкой, в правой части которой стоит F, получим:

2 Х_2 - 11 Х_3 - 3000 Х_4 = F - 300000.

В результате система уравнений преобразуется к виду, в котором переменная Х1 входит только в первое уравнение:

Х_1 + 2/3 Х_2 + 2/1,2 Х_3 + 200 Х_4 = 20000 \\
7/900 Х_2 + 4/900 Х_3 - 2/3 Х_4 + Х_5 = 100/3\\
Х_3 / 80 + Х_6 = 100 \\
2 Х_2 - 11 Х_3 - 3000 Х_4 = F - 300000.

Очевидно, у новой системы имеется улучшенное по сравнению с исходным решение, соответствующее вершине в шестимерном пространстве:

Х1 = 20000, Х_2 = Х_3 = Х_4 = 0, Х_5 = 100/3, Х_6 = 100, F = 300000.

В терминах исходной задачи это значит, что надо выпускать только кухни. Такое решение приемлемо, если допустимо выпускать только один вид продукции.

Повторим описанную выше операцию. В строке с F имеется еще один положительный коэффициент - при Х_2 (если бы положительных коэффициентов было несколько - мы взяли бы максимальный из них). На основе коэффициентов при Х_2 (а не при Х_1, как в первый раз) образуем частные от деления соответствующих свободных членов на эти коэффициенты:

20000 / (2/3) = 30000, (100/3) / (7/900) = 30000/7, 100/0 = + \infty.

Таким образом, нужно выбрать вторую строку, для которой имеем наименьшее положительное отношение 30000/7. Вторую строку умножим на 900/7 (чтобы коэффициент при Х_2 равнялся 1). Затем добавим обновленную строку ко всем строкам, содержащим Х_2, предварительно умножив их на подходящие числа, т.е. такие, чтобы все коэффициенты при Х_2 стали бы после сложения равны 0, за исключением коэффициента второй строки, который уже стал равняться 1. Получим систему уравнений:

Х_1 + 9/7 Х_3 + 1800/7 Х_4 - 600/7 Х_5 = 120000/7 \\
Х_2 + 4/7 Х_3 - 600/7 Х_4 + 900/7Х_5 	 = 30000/7\\
Х_3 / 80 + Х_6 = 100 \\
- 85/7 Х_3 - 19800/7 Х_4 - 1800/7 Х_5 = F - 308571.

Поскольку все переменные неотрицательны, то из последнего уравнения следует, что прибыль F достигает своего максимального значения, равного 308571, при Х_3 = Х_4 = Х_5 = 0. Из остальных уравнений следует, что при этом Х_1 = 120000/7 = 17143, Х_2 = 30000/7 = 4286, Х_6 = 100. Поскольку в строке с F не осталось ни одного положительного коэффициента при переменных, то алгоритм симплекс-метода закончил свою работу, оптимальное решение найдено.

Практические рекомендации таковы: надо выпустить 17143 кухни, вчетверо меньше, т.е. 4286 кофемолок, самоваров не выпускать вообще. При этом прибыль будет максимальной и равной 308571. Все производственное оборудование будет полностью загружено, за исключением линии по сборке самоваров.

Транспортная задача. Различные технико-экономические и экономические задачи производственного менеджмента, от оптимальной загрузки станка и раскройки стального листа или полотна ткани до анализа межотраслевого баланса и оценки темпов роста экономики страны в целом, приводят к необходимости решения тех или иных задач линейного программирования. В книге [4.3] приведен обширный перечень публикаций, посвященный многочисленным применениям линейного программирования в металлургии, угольной, химической, нефтяной, бумажной и прочих отраслях промышленности, в проблемах транспорта и связи, планирования производства, конструирования и хранения продукции, сельском хозяйстве, в научных исследованиях, в том числе экономических, и даже при регулировании уличного движения.

В качестве очередного примера рассмотрим т.н. транспортную задачу. Имеются склады, запасы на которых известны. Известны потребители и объемы их потребностей. Необходимо доставить товар со складов потребителям. Можно по-разному организовать "прикрепление" потребителей к складам, т.е. установить, с какого склада какому потребителю и сколько вести. Кроме того, известна стоимость доставки единицы товара с определенного склада определенному потребителю. Требуется минимизировать издержки по перевозке.

Например, может идти речь о перевозке песка - сырья для производства кирпичей. В Москву песок обычно доставляется самым дешевым транспортом - водным. Поэтому в качестве складов можно рассматривать порты, а в качестве запасов - их суточную пропускную способность. Потребителями являются кирпичные заводы, а их потребности определяются суточным производством (в соответствии с имеющимися заказами). Для доставки необходимо загрузить автотранспорт, проехать по определенному маршруту и разгрузить его. Стоимость этих операций рассчитывается по известным правилам, на которых не имеет смысла останавливаться.

< Лекция 3 || Лекция 4: 123456 || Лекция 5 >
Михаил Агапитов
Михаил Агапитов

Не могу найти  требования по оформлению выпускной контрольной работы по курсу профессиональной переподготовки "Менеджмент предприятия"

Подобед Александр
Подобед Александр

Я нажал кнопку "начать курс" и почти его уже закончил, но для получения диплома на бумаге, нужно его же оплатить? Как оплатить? 

Денис Овчинников
Денис Овчинников
Россия
Павел Артамонов
Павел Артамонов
Россия, Москва, Московский университет связи и информатики, 2016