Спонсор: Microsoft
Опубликован: 13.11.2010 | Уровень: для всех | Доступ: платный | ВУЗ: Санкт-Петербургский государственный университет
Лекция 18:

Виртуальная память

Обработка ситуации отсутствия страницы в памяти

Если в таблице страниц имеется ссылка на страницу, отсутствующую в памяти, первое же обращение по такой ссылке приведет к прерыванию и вызову ОС (ситуации page fault – отсутствие страницы в памяти)

ОС по таблицам определяет, что именно произошло:

Если имеет место неверная ссылка (на страницу, отсутствующую в логической памяти), то работа программы прекращается.

Если же имеет место обычное отсутствие страницы в памяти, то ОС должна разместить его в основной памяти. Для этого ОС выполняет следующий алгоритм:

  • Найти незанятый фрейм в основной памяти ;
  • Считать содержимое страницы в данный фрейм ;
  • Изменить элемент таблицы страниц: validation-бит установить равным 1;
  • Продолжить работу программы. Напомним, что программа после прерывания продолжается с той же команды, которая была прервана из-за отсутствия страницы. Поэтому теперь программа продолжит нормально выполняться, и обращение к странице произойдет успешно.

Этапы обработки ситуации отсутствия страницы в памяти показаны на рис. 18.4.

Обработка ситуации отсутствия страницы в памяти.

увеличить изображение
Рис. 18.4. Обработка ситуации отсутствия страницы в памяти.

Этап 1 – выполнение команды load M, которая прерывается по отсутствию страницы в памяти; 2 – прерывание и вызов ОС; 3 – обращение к странице, находящейся в файле откачки на диске; 4 – считывание страницы в память на свободный фрейм; 5 – изменение элемента таблицы страниц; 6 – повторное (успешное) выполнение команды.

Отсутствие свободного фрейма. Оценка производительности стратегии обработки страниц по требованию.

На этапе 4 (рис. 18.4) возможна ситуация отсутствия свободного фрейма в основной памяти. При этом ОС должна выполнить замещение страницы (page replacement) – найти страницу, загруженную в память, но реально не используемую, и откачать ее.

Для оптимальной реализации стратегии замещения страниц требуется алгоритм, приводящий к наименьшему возможному числу отказов страниц. Возможные решения мы рассмотрим немного позже в данной лекции.

Дадим общую оценку производительности обработки страниц по требованию.

Введем коэффициент отказов страниц (Page Fault Rate) p:> 0 <= p <= 1.0.

Если p = 0, то имеет место отсутствие отказов страниц.

Если p = 1, то каждое обращение к странице приводит к отказу.

Оценим теперь эффективное время доступа (Effective Access Time - EAT):

EAT = (1 – p) * время доступа к памяти 
+ p * (время реакции на отказ 
+ [ время откачки страницы ]
+ время подкачки страницы 
+ время рестарта)

Дадим необходимые пояснения к данной формуле. Оценка времени складывается из двух слагаемых. Первое слагаемое соответствует ситуации, когда отказ страницы не имеет места, и оценивает среднее время доступа к странице в этом случае. Второе слагаемое вычисляет оценку времени в случае отказа страницы. В нем первая компонента – суммарное время реакции апппратуры и ОС на отказ страницы, вторая (необязательная) – время откачки страницы (если она требуется для замещения страниц), третья – время подкачки страницы, четвертая – время рестарта программы. Если коэффициент p рассматривать как вероятность отказа страницы, то величина EAT будет математическим ожиданием общего времени доступа к странице.

Преимущества виртуальной памяти при создании процессов

Благодаря механизму виртуальной памяти, могут быть использованы следующие оптимизации расходования памяти при создании процессов:

  • Копирование по записи (Copy-on-Write)
  • Отображение файлов в память (Memory-Mapped Files).

Принцип совместного использования страниц процессами (или копирование по записи - Copy-On-Write, COW) позволяет первоначально родительскому и дочернему процессам использовать одни и те же страницы памяти. Если какой-либо процесс модифицирует разделяемую страницу, то только в этом случае данная страница копируется. Принцип COW обеспечивает более эффективное создание процесса, так как копируются только модифицируемые страницы. Свободные страницы распределяются из списка страниц, инициализированных нулями.

Использование при вводе-выводе файлов, отображаемых в память, позволяет рассматривать файловый ввод-вывод как обычное обращение к памяти путем отображения блока на диске в страницу памяти.

Первоначально файл читается с использованием запроса страниц по требованию. Часть файла размером с одну страницу читается из файла в физическую страницу (фрейм). Последующие чтения из файла и записи в файл трактуются как обычные обращения к памяти. Это упрощает доступ к файлу, по сравнению с системными вызовами read() и write(). Это позволяет также нескольким процессам отображать в память один и тот же файл, по тому же принципу, как они совместно используют какие-либо страницы.

На рис. 18.5 иллюстрируется концепция файла, отображаемого в память.

Файлы, отображаемые в память.

увеличить изображение
Рис. 18.5. Файлы, отображаемые в память.

Процессы A и B совместно используют файл, причем каждому блоку файла соответствует страница в памяти. Эти страницы имеют одни и те же номера в таблицах страниц виртуальной памяти процессов. Страницы, присутствующие в памяти, фактически являются частями файла, обрабатываемого при вводе-выводе, благодаря этому, гораздо быстрее, чем обычный файл. По окончании обмена, при закрытии файла, система записывает все его измененные части на диск.

Подобный механизм имеется в большинстве операционных систем. Например, в системе Solaris он реализуется командой и системным вызовом mmap (memory map).

Гульжан Мурсакимова
Гульжан Мурсакимова
Василий Четвертаков
Василий Четвертаков
Анатолий Федоров
Анатолий Федоров
Россия, Москва, Московский государственный университет им. М. В. Ломоносова, 1989
Олег Волков
Олег Волков
Россия, Балаково, МБОУ СОШ 19