Опубликован: 07.08.2007 | Уровень: специалист | Доступ: свободно
Лекция 15:

Синхронные каналы SDH/SONET, технологические сети CAN, коммутируемая мультимегабитная информационная служба SMDS и протокол IEEE 802.17

< Лекция 14 || Лекция 15: 12345 || Лекция 16 >

Описано несколько типов виртуальных контейнеров для использования в различных каналах.

Таблица 15.2. Виды виртуальных контейнеров
Виртуальный контейнер Поддерживаемые услуги
VC -11 1,544 Мбит/с североамериканские каналы
VC -12 2,048 Мбит/с европейские каналы
VC -2 6,312 Мбит/с каналы (используются редко). VC -2 могут также объединяться для достижения больших скоростей
VC -3 34,368 Мбит/с и 44,736 Мбит/с каналы
VC -4 139,264 Мбит/с каналы и другие высокоскоростные услуги

В схеме мультиплексирования применены следующие обозначения ( таблица 15.21.):

Таблица 15.21.
С-n Контейнер уровня n ( n = 1, 2, 3, 4 );
VC -n Виртуальный контейнер уровня n ( n = 1, 2, 3, 4 );
TU-n Трибные блоки уровня n ( n = 1, 2, 3 );
TUG -n Группа трибных блоков n ( n = 2, 3 );
AU-n Административные блоки уровня n ( n = 3, 4 );
AUG Группа административных блоков (стандарт G.709).

Контейнеры С-n используются для инкапсуляции сигналов каналов доступа или трибов, при этом уровни n соответствуют уровням PDH. Контейнер С-1 может нести в себе контейнер С-11, который содержит триб Т1 = 1,54 Мбит/с, и контейнер С-12, несущий триб Е1 = 2 Мбит/с. Контейнер С-2 разбивается на контейнер С-21, содержащий триб Т2 = 6 Мбит/с, и контейнер С-22 с трибом Е2 = 8 Мбит/с. Контейнер С-3 разбивается на контейнер С-31 (триб Е3 = 34 Мбит/с ) и контейнер С-32 с трибом Т3 = 45 Мбит/с. С-4 не имеет подуровней и несет в себе триб Е4 = 140 Мбит/с.

Виртуальный контейнер VC -3 делится на два виртуальных контейнера — VC -31 и VC -32, полезная нагрузка VC -3 образуется из одного контейнера С-3 или с помощью мультиплексирования нескольких групп TUG -2.

Административный блок AU-3 разбивается на подуровни AU-31 и AU-32, поле данных которых формируется из виртуального контейнера VC -31 или VC -32 соответственно.

Административный блок AU-4 не имеет подуровней, его поле данных формируется из виртуального контейнера VC -4 или комбинаций других блоков: 4* VC -31 или 3* VC -32 или 21* TUG -21 или 16* TUG -22.

Иерархия мультиплексирования SDH

Рис. 15.2. Иерархия мультиплексирования SDH

На рис. 15.2 отображена иерархия мультиплексирования потоков информации в SDH. Здесь не показана возможность вложения контейнера VC -11 в TU-12. SDH-сигнал состоит из STM -1 кадров (Synchronous Transport Module уровень 1; рис. 15.3). Этот сигнал обеспечивает интерфейс для обмена со скоростью 155,52 Мбит/c, что является базовым блоком, из которого строятся интерфейсы с более высоким быстродействием. Для более высоких скоростей может быть использовано n STM -1 кадров с перекрытием байтов (byte interleave, см. рис. 15.6). Согласно требованиям CCITT n может принимать значения 1, 4 и 16, предоставляя интерфейс для каналов с полосой 155,52, 622,08 и 2488 Мбит/с. Каждый STM -1 кадр содержит 2430 байтов, передаваемых каждые 125 мкс. Для удобства такой кадр можно отобразить в виде блока, содержащего 9 строк по 270 байт.

Структура кадра STM-1

Рис. 15.3. Структура кадра STM-1

Первые 9 колонок кадра, исключая строку 4, используются в качестве заголовка. Регенераторная часть служит для передачи сигнала между линейным оборудованием и несет в себе флаги разграничения кадров, средства для обнаружения ошибок и управления телекоммуникационным каналом.

Мультиплексорный заголовок используется мультиплексорами, обеспечивая детектирование ошибок и информационный канал с пропускной способностью 576 Кбит/с. AU (Aministrative Units) предлагает механизм эффективной транспортировки информации STM -1. Административный блок перераспределяет информацию внутри виртуального контейнера. Начало виртуального контейнера индицируется указателем AU, где содержится номер байта, с которого начинается контейнер. Таким образом, начала STM -1 и VC не обязательно совпадают.

Вложение виртуального контейнера VC-4 в STM-1

Рис. 15.4. Вложение виртуального контейнера VC-4 в STM-1

Структура заголовков и указателей позволяет не только размещать меньшие кадры в больших, но и большие — в малых. Но вряд ли это можно рекомендовать.

VC-4, плавающий в AU-4

Рис. 15.5. VC-4, плавающий в AU-4

VC -4 (см. рис. 15.5) позволяет реализовать каналы с быстродействием 139,264 Кбит/с. Более высокая скорость обмена может быть достигнута путем соединения нескольких VC -4 вместе. Для более низких скоростей (около 50 Мбит/с) предлагается структура AU-3.

Три VC -3 помещаются в один кадр STM -1, каждый со своим AU-указателем. Когда три VC -3 мультиплексируются в один STM -1, их байты чередуются, то есть за байтом первого VC -3 следует байт второго VC -3, а затем — третьего. Чередование байтов (byte interleaving) используется для минимизации задержек при буферизации. Каждый VC -3 имеет свой AU-указатель, что позволяет им произвольно размещаться в пределах кадра STM -1.

Три VC-3 в STM-1 кадре

Рис. 15.6. Три VC-3 в STM-1 кадре

Каждому VC -3 при занесении в STM -1 добавляется 2 колонки заполнителей, которые размещаются между 29 и 30 колонками, а также между 57- и 58-й колонками контейнера VC -3. VC, соответствующие низким скоростям, сначала вкладываются в структуры, называемые TU (Tributary Units — вложенные блоки), и лишь затем в более крупные — VC -3 или VC -4. TU-указатели позволяют VC низкого уровня размещаться независимо друг от друга и от VC высокого уровня.

VC -4 может нести в себе три VC -3 непосредственно, используя TU-3 структуры, аналогичные AU-3. Однако транспортировка VC -1 и VC -2 внутри VC -3 несколько сложнее. Необходим дополнительный шаг для облегчения процесса мультиплексирования VC -1 и VC -2 в структуры более высокого уровня (см. рис. 15.7).

Транспортировка VC при низких скоростях с использованием TU-структур

Рис. 15.7. Транспортировка VC при низких скоростях с использованием TU-структур

Так как VC -1 и VC -2 оформляются как TU, они вкладываются в TUG (Tributary Unit Group). TUG -2 имеет 9 рядов и 12 колонок, куда укладывается 4 VC -11, 3 VC -12 или один VC -2. Каждый TUG -2 может содержать VC только одного типа. Но TUG -2, содержащие различные VC, могут быть перемешаны произвольным образом. Фиксированный размер TUG -2 ликвидирует различия между размерами VC -1 и VC -2, упрощая мультиплексирование виртуальных контейнеров различных типов и их размещение в контейнерах более высокого уровня. Данная схема мультиплексирования требует более простого и дешевого оборудования для осуществления мультиплексирования, чем PDH.

Если в SDH управление осуществляется на скоростях в несколько килобайт, в ATM оно реализуется на скорости канала, что влечет за собой определенные издержки.

Для управления SDH/SONET используется протокол SNMP (см. RFC-1595, "Definitions of Managed Objects for the SONET/SDH Interface Type") и база данных MIB.

Архитектура сети, базирующейся на SDH, может иметь кольцевую структуру или схему точка-точка.

< Лекция 14 || Лекция 15: 12345 || Лекция 16 >
Евгений Виноградов
Евгений Виноградов
Экстернат
Илья Сидоркин
Илья Сидоркин
Как получить диплом?
Анатолий Федоров
Анатолий Федоров
Россия, Москва, Московский государственный университет им. М. В. Ломоносова, 1989
Юрий Мироненко
Юрий Мироненко
Украина, Бровары