Стоимость "обучения" |
Мягкая передача вызова и управление мощностью в CDMA
4.1. Мягкая передача вызова
По характеру передачи разделяют [22, 111]:
- жесткий хэндовер — hard handover;
- мягкий (межсотовый) хэндовер — soft (intercell) handover;
- более мягкий (межсекторный) хэндовер — softer (intersector) handover.
При жесткой передаче соединения (hard handover) процесс переключения проводится без разрыва связи, но сопровождается ухудшением связи в момент переключения частот. Чаще всего прерывание и восстановление связи воспринимается абонентом как "щелчок" в трубке.
При жестком хэндовере осуществляется переход к новой базовой станции: в системе CDMA изменяются пилотные сигналы (используется новый набор, относящийся к новой соте) и проводится подстройка кадров трафика под систему синхронизации новой соты.
Сценарии жесткого хэндовера включают:
- хэндовер между базовыми станциями или секторами, имеющими разные несущие частоты CDMA;
- хэндовер при замене одного пилот-сигнала на другой пилот-сигнал (непересекающиеся наборы активных пилот-сигналов);
- хэндовер от CDMA к аналоговой системе и от аналоговой системы к CDMA.
При мягкой передаче соединения (soft handover) предусматривается одновременная работа мобильной станции (MS) более чем с одной базовой станцией. В процессе хэндовера мобильная станция передает одну и ту же информацию обеим базовым станциям. Каждая базовая станция получает от мобильной станции сигнал с соответствующей задержкой распространения и затем передает его на устройство оценки качества и выбора кадров (SU — Selector Unit). Другими словами, две копии одного и того же кадра передаются SU, который выбирает лучший кадр и бракует другой. Переключение рабочего канала с одной базовой станции на другую происходит без ухудшения качества соединения, при этом используется пилот-сигнал из одного и того же набора соты. Такой процесс еще называют хэндовером с разнесением каналов (diversity handover). Разнесение улучшает характеристики канала в сети с замираниями. Главное преимущество мягкого хэндовера — разнесение трасс для прямых и обратных каналов трафика, чтобы уменьшить интерференцию. Соответственно, требуется меньший расход энергии для передачи информации и для передачи сигналов от мобильных станций, что приводит к более длительному сроку использования заряда аккумулятора.
При более мягкой передаче (softer handover) во время хэндовера между секторами одной соты мобильная станция передает одну и ту же информацию обоим секторам одной соты. Канальный комплект соты получает сигналы от обоих секторов, объединяет оба входящих сигнала и передает устройству оценки качества и выбора кадров (SU) только один кадр. В этом случае не требуется задействовать несколько канальных комплектов, как это нужно в случае мягкого хэндовера. При мягком хэндовере такое объединение в одном канальном комплекте сигналов от двух сот не дает хорошего эффекта, поскольку сигналы от различных сот менее коррелированы, чем сигналы от секторов одной и той же ячейки.
4.1.1. Пилот-сигнал
Термин "пилот-сигнал" в системе CDMA означает кодовую последовательность, передаваемую вместе с другими сигналами в общей полосе частот. Все пилот-сигналы передаются с помощью пилотного канала (PICH), направленного от базовой станции к мобильной станции. Пилот-сигналы разделяются с помощью псевдослучайных последовательностей и передаются на одной и той же частоте. Пилотные сигналы содержат указание обслуживаемой соты или сектора. Излучение пилот-сигнала осуществляется непрерывно и в широковещательном режиме, чтобы его могли принять все мобильные станции, расположенные в зоне обслуживания данной базовой станции (BS). С помощью пилот-сигнала обеспечивается кадровая синхронизация и когерентное восстановление несущей (полностью совпадающей с исходной несущей). Мобильная станция различает следующие четыре группы пилотных сигналов.
Группа активных сигналов
Она содержит пилот-сигналы, связанные с каналами трафика, идущими от базовой станции (разделенными с помощью функций Уолша) и назначенными мобильной станции. Сигналы от этих трех разнесенных каналов (three fingers) объединяются с помощью приемника, суммирующего эти сигналы с соответствующими весовыми коэффициентами ( RAKE1RAKE — грабли. Название устройства происходит от условного обозначения, содержащего несколько входов (зубцы — fingers) для приема разнесенных каналов и одну объединяющую шину. - receiver). Обычно в группе содержится три пилот-сигнала, однако стандарт IS-95 позволяет объединять до шести пилот-сигналов. Базовая станция сообщает мобильной станции о содержании активной группы каналов, применяя сообщение "назначения канала" (Channel Assignment message). Активные пилот-каналы либо отслеживаются, либо используются для обслуживания соединений.
Группа кандидатов на пилот-сигнал
Эта группа содержит пилот-сигналы, которые в данный момент не входят в активную группу. Однако эти сигналы получены с достаточной интенсивностью, которая указывает, что связанные с ними прямые каналы трафика могут быть успешно приняты. Максимальный размер группы — шесть пилот-сигналов.
Группа соседних пилот-сигналов
Эта группа содержит соседние пилот-сигналы, которые в настоящее время не входят ни в активную группу, ни в группу кандидатов на пилот-сигнал, но их использование вероятно при хэндовере. Соседние пилот-сигналы — это сигналы всех сот (секторов), которые находятся в непосредственной близости от данной соты (сектора). Начальный список соседних пилот-сигналов передают мобильной станции в сообщении "системные параметры" по каналу вызова (FPCH). Максимальный размер группы соседних пилот-сигналов — двадцать.
Группа остальных пилот-сигналов
Эта группа содержит все возможные пилот-сигналы в текущей системе, исключая сигналы, входящие в группы активных, кандидатов или соседние группы.
При поиске пилот-сигналов мобильная станция не ограничена точными рамками, которые указывают номер псевдокода (PN). Пилот-сигналы выбираются в пределах нескольких тактовых интервалов расширяющего сигнала с учетом различных сигналов, возникающих из-за многолучевости и расположенных в пределах нескольких чипов (тактовых интервалов расширяющего сигнала) от прямого указателя пути прямого трафика. Другими словами, сигналы, возникающие из-за многолучевости, прибывают позже на несколько тактовых интервалов. Мобильные станции при поиске каналов используют окно поиска. Это окно указывает возможные номера пилот-сигналов из группы активных или кандидатов и соседних, наиболее близких к многолучевому сигналу, который поступил раньше других. При этом в окно поиска могут включаться остальные каналы, не указанные в этих группах.
Окна поиска
Мобильные станции используют следующие три окна поиска, чтобы проследить за получаемыми пилот-сигналами:
- SRCH_WIN_A — окно поиска устанавливает размеры для активных наборов и наборов кандидата;
- SRCH_WIN_N — окно поиска устанавливает размеры набора соседних пилот-сигналов;
- SRCH_WIN_R — окно поиска устанавливает размер набора остальных сигналов.
SRCH_WIN_A
SRCH_WIN_A — окно поиска, которое использует мобильная станция, чтобы проследить за наборами активных пилот-сигналов и кандидатов на пилот-сигнал. Это окно устанавливается согласно ожидаемой среде распространения. Оно должно быть достаточно большим, чтобы фиксировать все используемые многолучевые сигнальные компоненты базовой станции, и в то же самое время должно быть как можно меньше, чтобы оптимизировать работу по поиску.
Пример 1. Определим размер окна мобильной станции, если сигнал распространяется в среде, которая имеет следующие параметры:
- сигнал распространяется по прямому пути длиной 1 км;
- при многолучевом распространении сигнал проходит до мобильной станции 5 км;
- чиповая скорость, определяемая в стандарте I-95, 1,2288 Мчип/с;
- скорость распространения сигнала .
Тогда длительность одного чипа равна:
время распространения сигнала на расстояние 1000 м (1 км) равно:
или время задержки в чипах:
При длине 5 км это время задержки равно 20,5 чипам.
Разность задержек равна:
Размер окна поиска , или 33 чипа.
Пример 2. Пусть соты A и B находятся на расстоянии 16 км друг от друга ( рис. 4.1). Мобильная станция перемещается от соты A к соте B. Решено сделать область мягкого хэндовера между точками и , которые расположены на расстоянии 6 и 10 км от соты A (см. рис. 4.1).
Какой размер должен быть у окна поиска?
Используя результаты предыдущего примера, можно определить, что время задержки сигнала в чипах равно:
где — расстояние от источника сигнала до приемника в метрах.
В точке задержка сигнала от мобильной станции до соты A равна:
В точке задержка сигнала от мобильной станции до соты B равна:
Разность времен распространения равна:
В точке задержка сигнала от мобильной станции до соты A равна:
В точке задержка сигнала от мобильной станции до соты B равна:
Разность времен распространения равна:
Расчет гарантирует, что активные пилот-сигналы (кандидаты) находятся в пределах размеров одного окна и мягкий хэндовер возможен.
SRCH_WIN_N
SRCH_WIN_N - окно поиска, которое мобильный телефон использует, чтобы контролировать группу соседних пилот-сигналов. Размер этого окна обычно больше, чем SRCH_WIN_A. Достаточно большое окно требуется не только для того, чтобы фиксировать все годные к использованию мобильной станцией пилот-сигналы основной зоны обслуживания (с учетом многолучевости).Оно также должно фиксировать сигналы соседних сот. В этом случае мы должны принимать во внимание многолучевое разнесение сигналов и различия пути между обслуживающей основной станцией и соседними базовыми станциями.
Максимальный размер этого окна поиска ограничен расстоянием между двумя соседними базовыми станциями.
Рассмотрим две соседние станции, расположенные на расстоянии 6 км друг от друга. Пусть мобильная станция расположена прямо рядом с базовой станцией 1, и поэтому задержка распространения от базовой станции 1 к мобильной станции незначительна. Расстояние между основной станцией 2 и мобильным телефоном — 6 км.
Время распространения в чипах — 6000/244=24,6 чипа. Окно поиска показывает что пилот-сигнал от соты 2 прибывает к мобильной станции на 24,6 чипа позже, чем от соты 1. Таким образом, для мобильного телефона (расположенного в пределах ячеек 1 и 2), чтобы искать пилот-сигналы потенциальных соседей, окно SRCH_WIN_N должно быть установлено согласно физическому расстоянию между текущей базовой станцией и ее соседней базовой станцией. Фактически размер SRCH_WIN_N не может быть больше, чем вычисленный по этому расстоянию.
SRCH_WIN_R
Обычное требование к размеру этого окна — чтобы оно было по крайней мере такого же размера, как SRCH_WIN_N.