Опубликован: 31.07.2008 | Уровень: специалист | Доступ: свободно
Лекция 5:

Передача линейных и управляющих сигналов

< Лекция 4 || Лекция 5: 123456 || Лекция 6 >

Передача сигналов по двум выделенным каналам

При рассмотрении принципов использования временных каналов при цифровом потоке с импульсно-кодовой модуляцией приводилось два способа применения 16-го канала (канал сигнализации) [16, 17].

В первом случае сигналы управления передаются для любого из каналов тракта (общий канал сигнализации) со скоростью 64 Кбит/с. Такой принцип передачи сигналов будет рассмотрен в дальнейшем.

Второй способ получил название выделенный канал. В этом случае за каждым информационным каналом закрепляется сигнальный канал с реальной скоростью передачи для каждого 4 Кбит/c. Он был весьма распространен при связи с электромеханическими системами по цифровым трактам. Образование в цифровом тракте выделенного канала уже рассматривалась в разделе в "Коммутационные поля на микроэлектронной элементной базе" при описании рис. 2.1. При этом принципе 16-й канал разделяется на две части по 4 бита каждый. Принцип их использования подробно изложен в "Коммутационные поля на микроэлектронной элементной базе" .

В таблицах 5.1и 5.2приведены линейные сигналы, передаваемые по двум выделенным каналам.

Таблица 5.1. Линейные сигналы, передаваемые по двум выделенным каналам исходящей станцией
Направление сигнала Название сигнала Состояние бит Примечание
1 ВСК (a) 2 ВСК (b) c d
1 ----> ЗАНЯТИЕ 1 0 0 1 Передается при появлении нового вызова
2 ----> НАБОР НОМЕРА

Импульс

Пауза

Межцифровой интервал

0

1

1

0

0

0

0

0

0

1

1

1

Время передачи: Импульса – 50 мс

Паузы –50 мс

Межцифрового интервала – 700 мс

3 ----> РАЗЪЕДИНЕНИЕ 1 1 0 1 Передается в случае освобождения исходящей СЛ (отбой A и др.)
4 ----> ОТБОЙ A 0 0 0 1 Может быть принят, если АТС реализует систему двухстороннего отбоя
Таблица 5.2. Линейные сигналы, передаваемые по двум выделенным каналам по входящей связи
Направление сигнала Название сигнала Состояние бит Примечание
1 ВСК (a) 2 ВСК (b) c d
1 <---- ПОДВТВЕРЖДЕНИЕ ЗАНЯТИЯ 1 1 0 1 Ожидается в течение 1 с после посылки сигнала "занято"
2 <---- ОТВЕТ/ЗАПРОС 1 0 0 1 Передается после ответ вызываемого абонента. Если этот сигнал сопровождается частотным сигналом 500 Гц по разговорному тракту, то он должен обрабатываться как запрос информации АОН.
3 <---- ЗАНЯТОСТЬ 0 0 0 1 Передается со стороны входящей станции, в случае если, если абонент занят, недоступен или в случае сбоя процесса установления соединения
4 <---- ОТБОЙ Б 0 0 0 1 Передается со стороны входящей станции, в случае если абонент Б вешает трубку.
5 <---- БЛОКИРОВКА 1 1 0 1 Передается на исходящую станцию, в случае блокировки линии на входящей станции
6 <---- КОНТРОЛЬ ИСХОДНОГО СОСТОЯНИЯ 0 1 0 1 Сигнал передается входящей станции после получения сигнала "разъединение" и освобождения линии и оборудования

Общий канал сигнализации (система № 7)

С увеличением и усложнением функций коммутационных систем стало необходимо усовершенствовать систему сигнализации. Наиболее кардинальным решением было разделение цепей передачи информации и сигнальных цепей [2, 26]. Такая система реализуется следующим образом. На группу каналов выделяется сигнальный канал [2, 55, 63]. Информация, касающаяся соединения по любому каналу из группы, проходит по общему каналу и сопровождается адресом источника.

Преимущества такого способа следующие:

  1. Сигнальные цепи отделены от цепей передачи информации, что исключает их взаимное влияние, например имитацию сигналов в тракте обмена. Использование данного способа позволяет не подключать и не отключать приемники и передатчики и тракт обмена, что упрощает алгоритмы обмена сигналами.
  2. Обмен сигналами осуществляется с помощью средств, присущих технике передачи данных, поэтому увеличивается скорость обмена и вводятся эффективные способы защиты, которые были рассмотрены в первом разделе при изучении абонентских линий типа ISDN.
  3. Увеличивается число сигналов, которые могут быть переданы по тракту сигнализации, поскольку кодирование информации не связано с ограничениями, присущими взаимодействию с информационным трактом.
  4. Возможно использование пучков каналов в двухстороннем режиме. Предыдущие системы сигнализации были однонаправленными и делились на исходящие и входящие комплекты.
  5. Общий канал сигнализации не связан только с телефонными приложениями и может быть использован для передачи сигналов по любым протоколам, в том числе может быть мощным средством для передачи и коммутации данных общего назначения и организовывать отдельные сети.

Недостатки:

  1. Необходимость выделения отдельного канала. В цифровых АТС этот недостаток не влияет на занятость каналов обмена (для этого выделен 16-й канал), поэтому не является существенным и нами подробно не рассматривается.
  2. Централизация обмена. С точки зрения канальной надежности канал сигнализации всего один на группу из 30 каналов (это в ИКМ). Поэтому в больших пучках линий имеется возможность обмена по другому тракту.

С точки зрения управления этот недостаток присущ системам с централизованным управлением, где программа управления ОКС связана с одним (резервированным устройством). В децентрализованной системе могут быть несколько модулей, программное обеспечение которых управляет сигнализацией.

Общие каналы сигнализации представляют отдельную сеть и коммутируются по правилам коммутации сообщений. Возможны следующие способы маршрутизации сигнальных сообщений (рис. 5.1).

Способы маршрутизации

Рис. 5.1. Способы маршрутизации

Согласно первому способу (связанный ОКС), маршрутизация каналов сигнализации проводится совместно с маршрутизацией информационных каналов. При этом их маршруты совпадают, как показано на рис. 5.1а.

Второй способ — несвязный ОКС: маршрутизация сигнальной информации идет независимо от информационных каналов, и их маршруты могут не совпадать, как показано на рис. 5.1б.

Часто используется квазисвязанный способ, который заключается в том, что связанный способ применяется в нормальном режиме функционирования сети, а при выходе из строя система переходит на резервные направления сигнализации, не совпадающие по маршруту с информационными каналами. Они обычно заданы заранее.

Аппаратурная реализация

Основные устройства, реализующие ОКС, показаны на рис. 5.2.

Основные устройства реализующие ОКС

Рис. 5.2. Основные устройства реализующие ОКС

Первое из них — интерфейс с информационными каналами —реализует интерфейс с коммутационным полем. В зависимости от нагрузки входы ОКС могут занимать несколько входов в коммутационное поле. При этом в общем случае они имитируют цифровой поток и могут быть скоммутированы в любой канал любого тракта на выходе. Но как уже было указано, они коммутируются в 16-м канале каждого тракта (напомним, типовой ИКМ включает в себя 30 информационных каналов). Интерфейс позволяет накопить информацию от каждого канала сигнализации и коммутировать ее в 16-й канал требуемого тракта.

Возможность коммутации с другими каналами создает возможности ликвидации аварийных ситуаций и резервирования.

Контроллер ОКС может производить обработку сигналов и выполнять запросы нижних уровней протокола (физического и канального).

Аппаратурная реализация части протокола, как правило, увеличивает быстродействие и устойчивость системы.

Управляющее устройство представляет собой процессор и необходимые виды памяти. Это либо станционное управляющее устройство, либо устройство управления модулем.

В первом случае при установлении соединения взаимодействуют программные блоки ОКС и установления соединения. Во втором требуется обмен информацией с другими модулями.

На рис. 5.3 приводится диаграмма, сравнивающая архитектуру протоколов ОКС№7 и уровни OSI [16].

Архитектура протоколов ОКС № 7 и их сравнение с протоколами OSI

Рис. 5.3. Архитектура протоколов ОКС № 7 и их сравнение с протоколами OSI

Три нижних уровня модели протоколов ОКС носят название протоколов передачи сообщений (Message Transfer Part — MTP) и реализуются преимущественно с помощью аппаратуры (hardware).

Прикладные уровни приведены для примера, и их число и функции меняются с развитием коммутационной техники. Например, не так давно выделялась подсистема телефонной сигнализации, теперь она полностью реализуется подсистемой ISUP, которая объединяет в себе особенности телефонных протоколов и системы ISDN. Усовершенствованием прикладного уровня является прикладная подсистема транзакций (TCAP — Transaction Capabilities Application Part). Введение этой подсистемы позволяет на прикладном уровне обобщить некоторые действия и программы, либо наиболее часто вызываемые, либо общие переходы (транзакции), характерные для нескольких прикладных задач. Такие проблемы очень характерны для услуг, оказываемых Интеллектуальными или Подвижными сетями.

В подсистемах нижнего уровня имеется тенденция обеспечить передачу через ОКС не только данных, относящихся к сигнальной информации, но и других данных. В этом случае необходимо учитывать, что при передаче возникает две группы единиц информации — ориентированных на соединение и не ориентированных на соединение. В рамках этих групп появляются классы информации, которые предъявляют различные требования к системе.

Это, в первую очередь, требования к временным задержкам (чувствительна ли информация или нет к этому явлению), и в каждом из этих классов может передаваться информация, имеющая постоянную и переменную скорость.

Такие требования породили на уровне 3 системы передачи сообщений подсистему управления сигнальным соединением (SCCP — Signaling Connection Control Part), управляющую передачей по сети, в зависимости от типа информации.

Рассмотрим подсистемы, входящие в модель ОКС. Начнем с системы, которая раскрывает основные сигналы на уровне пользователя. Это поможет нам сравнить процедуры установления соединения в системах без ОКС и с ОКС.

Потом рассмотрим другие уровни, позволяющие защитить информацию, маршрутизировать сообщение и обеспечить надежность функционирования сети.

Подсистема передачи пользователя (Уровень 4). Подсистема ISUP

Ранее были перечислены возможные подсистемы пользователя:

  • подсистема телефонного пользователя и обмена данными ISDN (ISUP);
  • подсистема мобильных абонентов различных стандартов (MAP);
  • подсистема интеллектуальной сети (INAP).

Теперь нам необходимо детальное рассмотрение всех видов работы этих систем. Далее внимание будет сосредоточено на первой из них, которая подробно разбирается в этом курсе.

Надо отметить, что в настоящее время подсистема ISUP — часть, относящаяся к подсистеме ISDN, — поглощает ранее развитые системы.

Таблица 5.3. Сообщения подсистемы ISUP
Название сигнала Примечание
1 Начальное сообщение (IAM — Initial Address Message) Передается для занятия соседней станции
2 Последовательная передача адреса (SAM — Subsequent address) Передается при работе со станциями, не имеющими ОКС и требующими последовательной передачи цифр
3 Адрес завершен (Абонент найден) (ACM — Address complete) Сигнал о завершении соединения. Передается с последней станции после определения состояния абонента "свободен"
4 Ответ абонента (ANM — Answer) Передается при снятии телефонной трубки
5 Освобождение (REL — Release) Передается в случае, когда входящая станция может быть освобождена
6 Разъединение (RLC — Release complete) Передается при окончании соединения
7 Приостановка соединения (SUS — Suspend) Сигнал, по которому происходит приостановка соединения (например, при ожидании отбоя второго абонента)
8 Возобновление соединения (RES — Resume) Сигнал, который отменяет приостановку
9 Запрос номера абонента (A — INR — Information request) Запрос номера абонента A с целью предоставления счета за оказанные услуги или определение номера по заявке абонента
10 Информация (INF — Information) Ответное сообщение запроса номера
11 Блокировка (BLO — Blocking) Передается исходящей или входящей станцией в случае необходимости блокировки линии от занятия
12 Подтверждение блокировки (BLA — Blocking Acknowledgment) Передается для подтверждения блокировки
13 Частичное освобождение (CCL — Calling Party Clear signal) Передается, когда может быть освобождена часть занятых приборов. Сообщение поддерживает процедуру двухстороннего отбоя
14 Сообщение об оплате (CRG — Charge) Сообщение поддерживает процедуру начала оплаты
15 Начало посылки вызова RNG — (Ringing) Передается после начала посылки акустического сигнала "посылка вызова" при входящем полуавтоматическом соединении
16 Запрос номера абонента (INR — Information Request) Запрос передается для составления счета за предоставленные услуги или для определения вызывающей стороны
< Лекция 4 || Лекция 5: 123456 || Лекция 6 >
Гульсим Калакова
Гульсим Калакова
а можно послушать видео лекцию по данному курсу
Олег Сергеев
Олег Сергеев
Можно ли платить за обучение частями?
Дмитрий Карпов
Дмитрий Карпов
Россия, Нижний Новгород
Александр Улядуров
Александр Улядуров
Россия, Таганрог, Таганрогский государственный радиотехнический университет, 2001