Реализация языка программирования всегда сопровождается некоторым уточнением границ, в которых применяются общеизвестные понятия. Цель уточнения - удобство программирования и повышение эффективности программ. Рассмотрим отдельные решения, уточненные при реализации ряда Лисп-систем, на небольшом примере моделирования работы с множествами.
Задача: Пусть множества представлены с помощью списков. Для начала рассмотрим простые множества, элементами которых могут быть только атомы. Надо реализовать объединение ( UNION ) и пересечение ( INTERSECTION ) множеств.
Предварительный анализ задачи:
Функции UNION и INTERSECTION применяют к множествам, каждое множество представлено в виде списка атомов. Заметим, что обе функции рекурсивны и используют вспомогательную функцию, выясняющую входит ли атом в список (MEMBER).
Работу этих функций можно выразить следующим образом:
MEMBER – это функция двух аргументов, первый аргумент "А" - атом, а второй аргумент – список "Х". Функция вырабатывает значение "Т", если "А" входит в список "Х".
Определение тела функции состоит из трех ветвей:
то значение функции Nil, т.е. атом в списке не найден.
то значение функции T, т.е. атом имеется в списке.
алг member ( атом a, список x) арг a, x нач если пусто (a) то знач := Nil инес равно (a, голова (x) ) то знач := T иначе знач := member (a, хвост (x)) кон
UNION – это функция двух аргументов, оба аргумента "X" и "Y" - списки, представляющие множества. Функция вырабатывает новый список, в который входят все атомы из списков "Х" и "Y".
Определение тела функции состоит из трех ветвей:
то значением является второй аргумент, т.е. можно ничего не строить.
то достаточно объединить хвост первого аргумента со вторым аргументом, т.е. рекурсивно применяем исходную функцию, редуцируя первый аргумент.
алг UNION (список x,y) арг x, y нач если пусто (x) то знач := y инес member ( голова (x), y ) то знач := UNION (хвост (x), y) иначе знач := cons (голова (x), UNION (хвост (x), y)) кон
INTERSECTION – это функция двух аргументов, оба аргумента "X" и "Y" - списки, представляющие множества. Функция вырабатывает новый список, в который входят атомы списка "Х", входящие в список "Y".
Определение тела функции состоит из трех ветвей:
то и пересечение - пустой список.
то "голову" первого аргумента присоединяем к результату пересечения редуцированного первого аргумента со вторым аргументом.
алг INTERSECTION (список x,y) арг x, y нач если пусто (x) то знач := Nil инес member ( голова (x), y ) то знач := cons (голова (x), INTERSECTION (хвост (x), y)) иначе знач := INTERSECTION (хвост (x), y) кон
Определяя эти функции на Лиспе, мы используем специальную псевдо-функцию DEFUN. Программа выглядит так:
(DEFUN MEMBER (A X) ;определение проверки входит ли атом в список (COND ((NULL X) Nil) ((EQ A (CAR X)) T) (T (MEMBER A (CDR X)) ) ) ) (DEFUN UNION (X Y) ;определение объединения двух множеств (COND ((NULL X) Y) ((MEMBER (CAR X) Y) (UNION (CDR X) Y) ) (T (CONS (CAR X) (UNION (CDR X) Y))) )) ) )) (DEFUN INTERSECTION (X Y) ;определение пересечения двух множеств (COND ((NULL X) NIL) ((MEMBER (CAR X) Y) (CONS (CAR X) (INTERSECTION (CDR X) Y)) ) (T (INTERSECTION (CDR X) Y)) )) (INTERSECTION '(A1 A2 A3) '(Al A3 A5)) ;тест на пересечение двух множеств (UNION '(X Y Z) '(U V W X)) ;тест на объединение двух множеств
Эта программа предлагает Лисп-системе вычислить пять различных форм. Первые три формы сводятся к применению псевдо-функции DEFUN. Значение четвертой формы - (A1 A3). Значение пятой формы - (Y Z C B D X). Анализ пути, по которому выполняется рекурсия, показывает, почему элементы множества появляются именно в таком порядке.
Псевдо-функция - это функция, которая выполняется ради ее воздействия на систему, тогда как обычная функция - ради ее значения. DEFUN заставляет функции стать определенными и допустимыми в системе равноправно со встроенными функциями. Ее значение - имя определяемой функции, в данном случае - MEMBER, UNION, INTERSECTION. Можно сказать более точно, что полная область значения псевдо-функции DEFUN включает в себя некоторые доступные ей части системы, обеспечивающие хранение информации о функциональных объектах, а формальное ее значение – атом, символизирующий определение функции.
В этом примере продемонстрировано несколько элементарных правил написания функциональных программ, выбранных при реализации интерпретатора Лисп 1.5 в дополнение к идеализированным правилам, сформулированным в строгой теории Лиспа, которая описана в предыдущем разделе.
Например:
((A . B) X (C . (E F D))) - есть допустимое S-выражение.
Оно может быть записано как
((A . B) . ( X . ((C . (E . ( F . (D . Nil))) ) . Nil)))
или
((A . B) X (C E F D))
При наборе форм в диалоге интерпретатор сам напечатает результаты, а при загрузке программы их файла надо позаботиться о выводе результатов программы с помощью псевдо-функции PRINT.
(PRINT (INTERSECTION '(A1 A2 A3) '(Al A3 A5)) ) (PRINT (UNION '(X Y Z) '(U V W X)) ) (PRINT (UNION (READ) '(1 2 3 4)) ) ; объединение вводимого списка со списком '(1 2 3 4)