Деревья, вероятность и генетика
Вероятность и генетика
Приведем примеры использования деревьев в генетике. С помощью дерева можно наглядно представить наследование пары генов и , передаваемых родителями. Потомок получает эти гены в одной из комбинаций: или . Генетически комбинация не отличается от комбинации .
В генетике допускается, что наследование данного гена происходит случайно, независимо и с равными вероятностями для всех потомков (у растений, например, их может быть очень много). Пусть ген наследуется (и от отца, и от матери) с вероятностью , ген — с вероятностью . В этом случае отца в смысле унаследования гена можно уподобить, например, одной бросаемой монете, мать — второй (рис. 13.3). Тогда .
Далее будем полагать, что . Заметим, что у таких "генеалогических" деревьев вершины, если они не висячие и не корневые, имеют степень 3.
Теперь от родителей перейдем к "дедушкам" и "бабушкам" и продлим дерево еще на один ярус.
Когда сочетаются браком двоюродные брат и сестра, они могут передать своему ребенку копии пар генов, которыми обладали их общие дедушка и бабушка (возможными мутациями этих генов пренебрегаем).
Считая, что в общем случае неизвестно численное значение вероятности того, что потомок наследует от своих родителей пару одинаковых генов или определим в зависимости от вероятность унаследования общей пары генов от общего дедушки.
Граф, описывающий ситуацию, которая нас интересует, в случаях так называемого кровного родства деревом не является — две его висячие вершины "слипаются" (рис. 13.4).
Введем коэффициент кровного родства по формуле , где — вероятность того, что оба гена являются копиями генов . При этом оказывается, что вероятность нетрудно подсчитать.
Рассмотрим один из генов, который унаследовал от своего отца . Вероятность того, что унаследовал этот ген от своего деда , равна . Вероятность того, что дедушка передал копию того же гена , также равна , и вероятность того, что передал копию этого гена , равна . Все эти события независимые, и, следовательно, .
.
Рассмотренный пример дает некоторое представление о расчетах, связанных с проблемами сохранения в потомстве желательных признаков прародителей: вывода сортов пшеницы, пород собак, голубей, домашних животных, искусственного восстановления вымирающих пород животных. Все эти проблемы разные по роли и значимости, но они имеют общую математическую суть.