Обработка и хранение информации
3.3. Хранение информации. Базы и хранилища данных
Предметная область какой-либо деятельности - часть реального мира, подлежащая изучению с целью организации управления процессами и объектами для получения бизнес-результата. Предметная область может быть разделена (декомпозирована) на фрагменты: например, предприятие - это дирекция, плановые отделы, бухгалтерия, цеха, отделы маркетинга, логистики и продаж, клиенты, поставщики и т. д. Каждый фрагмент предметной области характеризуется: множеством объектов и процессов, использующих объекты; множеством пользователей, имеющих различные взгляды на предметную область; данными, которые описывают объекты и процессы предметной области.
Эти данные отражают динамичную внешнюю и внутреннюю среду предприятия, поэтому в специальных разделах информационной системы необходимо создавать динамически обновляемые модели отражения внешнего мира с использованием единого хранилища - базы данных.
База данных, БД (Data Base) - структурированный организованный набор данных, объединенных в соответствии с некоторой выбранной моделью и описывающих характеристики какой-либо физической или виртуальной системы ( рис. 3.2).
Понятие "динамически обновляемая БД" означает, что соответствие базы данных текущему состоянию предметной области обеспечивается не периодически, а в режиме реального времени. При этом одни и те же данные могут быть по-разному представлены в соответствие с потребностями различных групп пользователей.
Система управления базами данных, СУБД (Data Base Management System) - специализированная программа или комплекс программ, предназначенные для манипулирования базой данных. Для создания информационной системы и управления ею СУБД необходима в той же степени, как для разработки программы на алгоритмическом языке необходим транслятор.
СУБД часто упрощённо или ошибочно называют "базой данных". Нужно различать набор данных (собственно БД) и программное обеспечение, предназначенное для организации и ведения баз данных (СУБД).
Отличительной чертой баз данных следует считать то, что данные хранятся совместно с их описанием, а в прикладных программах описание данных не содержится. Независимые от программ пользователя данные обычно называются метаданными или данными о данных. В ряде современных систем метаданные, содержащие также информацию о пользователях, форматы отображения, статистику обращения к данным и др. сведения, хранятся в специаль-ном словаре базы данных.
Организация структуры БД формируется, исходя из следующих соображений:
- адекватность описываемому объекту/системе - на уровне концептуальной и логической модели;
- удобство использования для ведения учёта и анализа данных - на уровне так называемой физической модели.
Виды концептуальных и логических моделей БД:
- картотеки;
- сетевые;
- иерархические;
- реляционные;
- дедуктивные;
- объектно-ориентированные;
- многомерные.
На уровне физической модели электронная БД представляет собой файл или набор данных в dbf-форматах приложений Excel, Access, либо в специализированном формате конкретной СУБД. Также в СУБД в понятие физической модели включают специализированные виртуальные понятия, существующие в её рамках - таблица, табличное пространство, сегмент, куб, кластер и т. д.
В настоящее время наибольшее распространение получили реляционные базы данных. Картотеками пользовались до появления электронных баз данных. Сетевые и иерархические базы данных считаются устаревшими, объектно-ориентированные, пока никак не стандартизированы и не получили широкого распространения.
Реляционная база данных - база данных, основанная на реляционной модели. Слово "реляционный" происходит от английского "relation" (отношение).
Теория реляционных баз данных была разработана доктором Коддом из компании IBM в 1970 году. В реляционных базах данных все данные представлены в виде простых таблиц, разбитых на строки и столбцы, на пересечении которых расположены данные. Запросы к таким таблицам возвращают как отдельные данные, так и таблицы, которые сами могут становиться предметом дальнейших запросов. Каждая база данных может включать несколько таблиц.
Кратко особенности реляционной базы данных можно сформулировать следующим образом:
- данные хранятся в таблицах, состоящих из столбцов ("атрибутов") и строк ("записей");
- на пересечении каждого столбца и строчки стоит в точности одно значение;
- у каждого столбца есть своё имя, которое служит его названием, и все значения в одном столбце имеют один тип;
- запросы к базе данных возвращают результат в виде таблиц, которые тоже могут выступать как объект запросов;
- строки в реляционной базе данных неупорядочены, упорядочивание производится в момент формирования ответа на запрос.
Общепринятым стандартом языка работы с реляционными базами данных в настоящее время является язык структурированных запросов (Structured Query Language - SQL). Это универсальный компьютерный язык, применяемый для создания, модификации и управления данными в реляционных базах данных. Вопреки существующим заблуждениям, SQL является информационно-логическим языком, а не языком программирования.
SQL основывается на реляционной алгебре. Язык SQL делится на три части:
- операторы определения данных;
- операторы манипуляции данными (insert, select, update, delete);
- операторы определения доступа к данным.
Основные функции системы управления базами данных:
- управление данными во внешней памяти (на различных носителях);
- управление данными в оперативной памяти;
- журналирование изменений и восстановление базы данных после сбоев;
- поддержка языков БД (язык определения данных, язык манипулирования данными, язык определения доступа к данным).
Обычно современная СУБД содержит следующие компоненты ( рис. 3.3):
- ядро, которое отвечает за управление данными во внешней и оперативной памяти и журналирование;
- процессор языка базы данных, обеспечивающий оптимизацию запросов на извлечение и изменение данных и создание, как правило, машинно-независимого исполняемого внутреннего кода;
- подсистему поддержки времени исполнения, которая интерпретирует программы манипуляции данными, создающие пользовательский интерфейс с СУБД.
- сервисные программы (внешние утилиты), обеспечивающие ряд дополнительных возможностей по обслуживанию информационной системы.
По типу управляемой базы данных СУБД разделяются на: иерархические, реляционные, объектно-реляционные, объектно-ориентированные, сетевые.
По архитектуре организации хранения данных:
- локальные СУБД (все части локальной СУБД размещаются на одном компьютере);
- распределенные СУБД (части СУБД могут размещаться на двух и более компьютерах).
Классификация СУБД по способу доступа к БД:
- файл-серверные;
- клиент-серверные;
- трехзвенные;
- встраиваемые.
Файл-серверные СУБД. Архитектура "файл-сервер" не имеет сетевого разделения компонентов диалога и использует компьютер для функции отображения, что облегчает построение графического интерфейса. "Файл-сервер" только извлекает данные из файлов, так что дополнительные пользователи добавляют лишь незначительную нагрузку на центральный процессор, и каждый новый клиент добавляет вычислительную мощность сети. Минус - высокая загрузка сети. На данный момент файл-серверные СУБД считаются устаревшими. Примеры: Microsoft Access, MySQL (до версии 5.0).
Клиент-серверные СУБД. Такие СУБД состоят из клиентской части (которая входит в состав прикладной программы) и сервера. Клиент-серверные СУБД, в отличие от файл-серверных, обеспечивают разграничение доступа между пользователями и меньше загружают сеть и клиентские машины. Сервер является внешней по отношению к клиенту программой, и по надобности его можно заменить другим. Недостаток клиент-серверных СУБД в самом факте существования сервера (что плохо для локальных программ - в них удобнее встраиваемые СУБД) и больших вычислительных ресурсах, потребляемых сервером. Примеры: Firebird, In-terbase, MS SQL Server, Oracle, DB2, PostgreSQL, MySQL (старше версии 5.0).
Существенным недостатком двухзвенной клиент-серверной архитектуры является необходимость установления прямого соединения между клиентским компьютером и базой данных. При трехзвенной архитектуре пользовательское приложение (клиент) соединяется со специально выделенным сервером приложений, и только он уже соединяется с базой данных. Кроме повышения уровня безопасности трехзвенная архитектура позволяет более гибко модернизировать приложения. Как правило, в массовой клиентской части оставляют только минимальный набор функций по доступу и отображению информации, а основную бизнес-логику реализуют в программах, запускаемых на серверах приложений. При этом модернизация обычно затрагивает только сервер приложений, а на массовых клиентских местах переустанавливать ПО не приходится.
Встраиваемая СУБД - это, как правило, "библиотека", которая позволяет унифицированным образом хранить большие объёмы данных на локальной машине. Доступ к данным может происходить через SQL либо через особые функции СУБД. Встраиваемые СУБД быстрее обычных клиент-серверных и не требуют установки сервера, поэтому востребованы в локальном ПО, которое имеет дело с большими объёмами данных - например, геоинформационные системы (Geographic Informational System - GIS). Примеры: SQLite, BerkeleyDB, один из вариантов Firebird, один из вариантов MySQL.
В общем случае СУБД могут быть классифицированы в системе координат {Неоднородность - Автономность - Распределенность} ( рис. 3.4).
Таким образом, распределенная обработка данных в обязательном порядке предполагает наличие банков и баз данных. Но база данных - это не просто место, куда складывают данные, ими нужно пользоваться, актуализировать, изменять форматы и связи, совершать множество других действий. Если бессистемно наполнять базу данных информацией, то через некоторое время ее невозможно будет использовать - времени на поиск нужных данных будет уходить всё больше и больше, физическое пространство базы переполнится. Чтобы этого избежать, данные необходимо "очищать" и структурировать, а для эффективной работы с ними необходимы системы управления работой баз данных.
Индустрия создания баз данных и СУБД берет свое начало в 60-х годах прошлого века и к настоящему времени достаточно развита, однако понятие "хранилище данных" в современном понимании его появилось относительно недавно. Идея хранилищ данных оказалось востребованной, так как во многих видах государственной, деловой, научной, социальной деятельности необходимы тематически объединенные и исторически очищенные совокупности данных, при этом постоянно возрастала потребность:
- в более дешевых данных;
- в точных и структурированных данных;
- в большей оперативности получения и обработки данных;
- в интегрированных данных.
К концу 80-х годов, когда была в полной мере осознана необходимость интеграции корпоративной информации и надлежащего управления этой информацией, появились технические возможности для создания соответствующих систем, которые первоначально были названы "хранилищами информации" (Information Warehouse - IW). И лишь в 90-е годы, с выходом книги Билла Инмона, хранилища получили свое нынешнее наименование "хранилища данных" (Data Warehouse - DW) [25].
Б. Инмон определил хранилища данных как "предметно-ориентированные, интегрированные, неизменные, поддерживающие хронологию наборы данных, организованные для целей поддержки управления, призванные выступать в роли единого и единственного источника истины, обеспечивающего менеджеров и аналитиков достоверной информацией, необходимой для оперативного анализа и принятия решений".
В основе концепции хранилищ данных лежат следующие основополагающие идеи:
- интеграция ранее разъединенных детализированных данных (исторические архивы, данные из традиционных систем обработки документов, разрозненных баз данных, данные из внешних источников) в едином хранилище данных;
- тематическое и временнОе структурирование, согласование и агрегирование;
- разделение наборов данных, используемых для операционной (производственной) обработки, и наборов данных, используемых для решения задач анализа.
Данные, помещаемые в хранилище, должны отвечать определенным требованиям - предметной ориентированности, интегрированности, поддержки хронологии и неизменяемости (табл. 3.3 (3.3.1)).
Предметная ориентированность | Все данные о некоторой сущности (бизнес-объекте, бизнес-процессе и т. д.) из некоторой предметной области собираются из множества различных источников. Эти данные очищаются, согласовываются, дополняются, агрегируются и представляются в единой, удобной для их использования в бизнес-анализе форме |
Интегрированность | Все данные о различных бизнес-объектах, взаимно согласованы и хранятся в едином общекорпоративном хранилище |
Поддержка хронологии | Данные хронологически структурированы и отражают историю за период вре-мени, достаточный для выполнения задач бизнес-анализа, прогнозирования и подготовки принятия решения |
Неизменяемость | Исходные (исторические) данные после того, как они были согласованы, вери-фицированы и внесены в общекорпоративное хранилище, остаются неизменными и используются исключительно в режиме чтения |
Хранилище данных выполняет множество функций, но его основное предназначение - предоставление точных данных и информации в кратчайшие сроки и с минимумом затрат.
Понятие хранилище данных в первоначальном понимании было основано на понятии распределенной витрины данных (Distributed Data Mart - DDM). Поэтому в классическом исполнении хранилище данных было, прежде всего, репозиторием (сквозной базой данных) данных и информации предприятия.
Среда хранилища была предназначена только для чтения и состояла из детальных и агрегированных данных, которые полностью очищены и интегрированы; кроме того, в репозитории хранилась обширная и детальная история данных на уровне транзакций.
С точки зрения архитектурного решения такое хранилище данных реализует свои функции через подмножество зависимых витрин данных ( рис. 3.5).
Достоинствами архитектуры классического хранилища данных являются:
- общая семантика;
- централизованная, управляемая среда;
- согласованный набор процессов извлечения и бизнес-логики использования;
- непротиворечивость содержащейся информации;
- легко создаваемые по шаблонам и наполняемые витрины данных;
- единый репозиторий метаданных;
- многообразие механизмов обработки и представления данных.
К недостаткам можно отнести большие затраты по реализации, высокую ресурсоемкость в масштабе всего предприятия, потребность в сложных сервисных системах, рискованный сценарий развития, когда все данные и метаданные находятся в одном репозитории и в неблагоприятном случае могут быть потеряны. Кроме этого, при фильтрации, агрегировании и рафинировании "сырых" данных для такого хранилища обычно теряется очень много информации, которая может быть чрезвычайно полезной при бизнес-анализе.
В связи с этим возникло понимание того, что хранилище, помимо механизмов размещения и извлечения данных (On Line Trans-actional Processing - OLTP), репозитория и витрин, должно иметь соответствующее пространство для организации "сырых" данных и их многомерного анализа в режиме реального времени (On Line Analytical Processing - OLAP).