Опубликован: 19.07.2006 | Уровень: для всех | Доступ: свободно
Лекция 3:

Протоколы

Аннотация: Даются описания протоколов Synchronous Data-Link Control (SDLC), X25, Frame Relay, и SMDS.

SDLC и его производные

Библиографическая справка

IBM разработала протокол Synchronous Data-Link Control (SDLC) (Управление синхронным каналом передачи данных) в середине 1970 гг. для применения в окружениях Systems Network Architecture (SNA) (Архитектура системных сетей). SDLC был первым из протоколов канального уровня нового важного направления, базирующегося на синхронном бит-ориентированном режиме работы. По сравнению с синхронным, ориентированным по символам (например, Bisynk фирмы IBM) и синхронным, с организацией счета байтов (например, Digital Data Communications Message Protocol - Протокол Сообщений Цифровой Связи) протоколами, бит-ориентированные синхронные протоколы являются более эффективными и гибкими, и очень часто более быстродействующими.

После разработки SDLC компания IBM представила его на рассмотрение в различные комитеты по стандартам. Международная Организация по Стандартизации (ISO) модифицировала SDLC с целью разработки протокола HDLC (Управление каналом связи высокого уровня). Впоследствии Международный консультативный комитет по телеграфии и телефонии (CCITT) модифицировал HDLC с целью создания "Процедуры доступа к каналу" (LAP), а затем "Процедуры доступа к каналу, сбалансированной" (LAPB). Институт инженеров по электротехнике и радиоэлектронике (IEEE) модифицировал HDLC , чтобы разработать IEEE 802.2. Kaждый из этих протоколов играет важную роль в своей области. SDLC остается основным протоколом канального уровня SNA для каналов глобальных сетей.

Основы технологии

SDLC поддерживает разнообразные типы соединений и топологий. Он может применяться в сетях с двухточечными (непосредственными) и многоточечными связями, со связанным и несвязанным носителем, с полностью и наполовину дублированными средствами передачи, с коммутацией цепей и коммутацией пакетов.

SDLC идентифицирует два типа сетевых узлов:

  • Первичный

    Управляет работой других станций (называемых вторичными). Первичный узел опрашивает вторичные в заранее заданном порядке. После этого вторичные узлы могут передавать, если у них имеются исходящие данные. Первичный узел также устанавливает каналы и завершает их работу, и управляет каналом во время его функционирования.

  • Вторичные

    Управляются первичным узлом. Вторичные узлы могут только отсылать информацию в первичный узел, но не могут делать этого без получения разрешения от первичного узла.

Первичные и вторичные узлы SDLC могут быть соединены в соответствии со следующими четырьмя основными конфигурациями:

  • Point-to-point (двухточечная).

    Предполагает только два узла: один первичный и один вторичный.

  • Multipoint (многоточечная).

    Включает в себя один первичный и множество вторичных узлов.

  • Loop (контур).

    Подразумевает топологию контура, когда первичный узел соединяется с первым и последним вторичными узлами. Промежуточные вторичные узлы, отвечая на запросы первичного узла, передают сообщения друг через друга.

  • Hub go-ahead (готовый вперед).

    Предполагает наличие входного и выходного каналов. Первичный узел использует выходной канал для связи со вторичными узлами. Вторичные узлы используют входной канал для связи с первичным. Входной канал соединяется с первичным узлом через каждый вторичный по схеме гирляндной цепи.

Форматы блока данных

Формат блока данных SDLC представлен на Рис. 3.1.

SDLC Frame Format

Рис. 3.1. SDLC Frame Format

Как видно из рисунка, блоки данных SDLC ограничены уникальной структурой "флага" ( flag ). Поле "адрес" ( address ) всегда содержит адрес вторичного узла, задействованного в текущей связи. Т.к. первичный узел является либо источником связи, либо пунктом назначения, нет необходимости включать его адрес - он заранее известен всем вторичным узлам.

"Управляющее" ( control ) поле использует три разных формата в зависимости от использованного типа блока данных SDLC. Описание трех типов блока данных SDLC дается ниже в следующем перечне:

  • Информационные блоки данных ( Information ( I ) frames ).

    Эти блоки данных содержат информацию высших уровней и определенную управляющую информацию (необходимую для работы с полным дублированием). Номера последовательностей отправки и приема и бит "опроса последнего" ( P/F ) выполняют функции управления потоком информации и неисправностями. Номер последовательности отправки ( send sequence number ) относится к номеру блока данных, который должен быть отправлен следующим. Номер последовательности приема ( receive sequence number ) обеспечивает номер блока данных, который должен быть принят следующим. При полностью дублированном диалоге как отправитель, так и получатель хранят номера последовательностей отправки и приема. Первичный узел использует бит P/F, чтобы сообщить вторичному узлу, требует он от него немедленно ответного сигнала или нет. Вторичный узел использует этот бит для того, чтобы сообщить первичному, является текущий блок данных последним или нет в текущей ответной реакции данного вторичного узла.

  • Блоки данных супервизора ( Supervisory ( S ) frames ).

    Эти блоки данных обеспечивают управляющую информацию. У них нет информационного поля. Блоки данных супервизора запрашивают и приостанавливают передачу, сообщают о состоянии и подтверждают прием блоков данных I.

  • Непронумерованные блоки данных ( Unnumbered ( U ) frames ).

    Как видно из названия, эти блоки данных неупорядочены. Они могут иметь информационное поле. Блоки данных U используются для управляющих целей. Например, они могут определять одно- или двубайтовое поле управления, инициализировать вторичные узлы и выполнять другие аналогичные функции.

Последовательность проверки блока данных ( frame check sequence ) (FCS) предшествует ограничителю завершающего флага. FCS обычно является остатком расчета "проверки при помощи циклического избыточного кода" ( cyclic redundency check ) (CRC). Расчет CRC выполняется повторно получателем. Если результат отличается от значения, содержащегося в блоке данных отправителя, считается, что имеет место ошибка.

Типичная конфигурация сети, базирующейся на SDLC, представлена на Рис. 3.2. Как показано на рисунке, контроллер организации связи IBM (раньше называвшийся групповым контроллером) на отдаленном пункте подключен к "немым" терминалам и к сети Token Ring. На местном вычислительном центре главная вычислительная машина IBM подключена (через оборудование подключения каналов) к фронтальному процессору (FEP), который может также иметь связи с местными локальными сетями Token Ring и стержнем SNA. Оба пункта соединены с помощью арендуемой, базирующейся на SDLC, 56-Kb/сек линии.

Typical SDLC-Based Network Configuration

Рис. 3.2. Typical SDLC-Based Network Configuration
Дмитрий Молокоедов
Дмитрий Молокоедов
Россия, Новосибирск, НГПУ, 2009