Опубликован: 22.04.2006 | Доступ: свободный | Студентов: 13079 / 2685 | Оценка: 4.27 / 3.83 | Длительность: 26:24:00
ISBN: 978-5-9556-0064-2
Лекция 13:

Методы кластерного анализа. Иерархические методы

< Лекция 12 || Лекция 13: 1234 || Лекция 14 >

Меры сходства

Для вычисления расстояния между объектами используются различные меры сходства (меры подобия), называемые также метриками или функциями расстояний. В начале лекции мы рассмотрели евклидово расстояние, это наиболее популярная мера сходства.

Квадрат евклидова расстояния.

Для придания больших весов более отдаленным друг от друга объектам можем воспользоваться квадратом евклидова расстояния путем возведения в квадрат стандартного евклидова расстояния.

Манхэттенское расстояние (расстояние городских кварталов), также называемое "хэмминговым" или "сити-блок" расстоянием.

Это расстояние рассчитывается как среднее разностей по координатам. В большинстве случаев эта мера расстояния приводит к результатам, подобным расчетам расстояния евклида. Однако, для этой меры влияние отдельных выбросов меньше, чем при использовании евклидова расстояния, поскольку здесь координаты не возводятся в квадрат.

Расстояние Чебышева. Это расстояние стоит использовать, когда необходимо определить два объекта как "различные", если они отличаются по какому-то одному измерению.

Процент несогласия. Это расстояние вычисляется, если данные являются категориальными.

Методы объединения или связи

Когда каждый объект представляет собой отдельный кластер, расстояния между этими объектами определяются выбранной мерой. Возникает следующий вопрос - как определить расстояния между кластерами? Существуют различные правила, называемые методами объединения или связи для двух кластеров.

Метод ближнего соседа или одиночная связь. Здесь расстояние между двумя кластерами определяется расстоянием между двумя наиболее близкими объектами (ближайшими соседями) в различных кластерах. Этот метод позволяет выделять кластеры сколь угодно сложной формы при условии, что различные части таких кластеров соединены цепочками близких друг к другу элементов. В результате работы этого метода кластеры представляются длинными "цепочками" или "волокнистыми" кластерами, "сцепленными вместе" только отдельными элементами, которые случайно оказались ближе остальных друг к другу.

Метод наиболее удаленных соседей или полная связь. Здесь расстояния между кластерами определяются наибольшим расстоянием между любыми двумя объектами в различных кластерах (т.е. "наиболее удаленными соседями"). Метод хорошо использовать, когда объекты действительно происходят из различных "рощ". Если же кластеры имеют в некотором роде удлиненную форму или их естественный тип является "цепочечным", то этот метод не следует использовать.

Метод Варда (Ward's method). В качестве расстояния между кластерами берется прирост суммы квадратов расстояний объектов до центров кластеров, получаемый в результате их объединения (Ward, 1963). В отличие от других методов кластерного анализа для оценки расстояний между кластерами, здесь используются методы дисперсионного анализа. На каждом шаге алгоритма объединяются такие два кластера, которые приводят к минимальному увеличению целевой функции, т.е. внутригрупповой суммы квадратов. Этот метод направлен на объединение близко расположенных кластеров и "стремится" создавать кластеры малого размера.

Метод невзвешенного попарного среднего (метод невзвешенного попарного арифметического среднего - unweighted pair-group method using arithmetic averages, UPGMA (Sneath, Sokal, 1973)).

В качестве расстояния между двумя кластерами берется среднее расстояние между всеми парами объектов в них. Этот метод следует использовать, если объекты действительно происходят из различных "рощ", в случаях присутствия кластеров "цепочного" типа, при предположении неравных размеров кластеров.

Метод взвешенного попарного среднего (метод взвешенного попарного арифметического среднего - weighted pair-group method using arithmetic averages, WPGM A (Sneath, Sokal, 1973)). Этот метод похож на метод невзвешенного попарного среднего, разница состоит лишь в том, что здесь в качестве весового коэффициента используется размер кластера (число объектов, содержащихся в кластере).

Этот метод рекомендуется использовать именно при наличии предположения о кластерах разных размеров.

Невзвешенный центроидный метод (метод невзвешенного попарного центроидного усреднения - unweighted pair-group method using the centroid average (Sneath and Sokal, 1973)).

В качестве расстояния между двумя кластерами в этом методе берется расстояние между их центрами тяжести.

Взвешенный центроидный метод (метод взвешенного попарного центроидного усреднения - weighted pair-group method using the centroid average, WPGMC (Sneath, Sokal 1973)). Этот метод похож на предыдущий, разница состоит в том, что для учета разницы между размерами кластеров (числе объектов в них), используются веса. Этот метод предпочтительно использовать в случаях, если имеются предположения относительно существенных отличий в размерах кластеров.

< Лекция 12 || Лекция 13: 1234 || Лекция 14 >