Опубликован: 16.12.2009 | Доступ: свободный | Студентов: 2572 / 429 | Оценка: 4.26 / 4.23 | Длительность: 33:53:00
Специальности: Руководитель, Экономист
Лекция 11:

Эконометрические информационные технологии

< Лекция 10 || Лекция 11: 12345 || Лекция 12 >

Эконометрика в контроллинге

Контроллеру и сотрудничающему с ним эконометрику нужна разнообразная экономическая и управленческая информация, не менее нужны удобные инструменты ее анализа. Следовательно, информационная поддержка контроллинга необходима для успешной работы контроллера. Без современных компьютерных инструментов анализа и управления, основанных на продвинутых эконометрических и экономико-математических методах и моделях, невозможно эффективно принимать управленческие решения. Недаром специалисты по контроллингу большое внимание уделяют проблемам создания, развития и применения компьютерных систем поддержки принятия решений. Высокие статистические технологии и эконометрика - неотъемлемые части любой современной системы поддержки принятия экономических и управленческих решений.

Важная часть эконометрики - применение высоких статистических технологий к анализу конкретных экономических данных. Такие исследования зачастую требуют дополнительной теоретической работы по "доводке" статистических технологий применительно к конкретной ситуации. Большое значение для контроллинга имеют не только общие методы, но и конкретные эконометрические модели, например, вероятностно-статистические модели тех или иных процедур экспертных оценок ( "Эконометрические методы проведения экспертных исследований и анализа оценок экспертов" ) или эконометрики качества ( "Эконометрические методы управления качеством и сертификации продукции" ), имитационные модели деятельности организации, прогнозирования в условиях риска ( "Эконометрика прогнозирования и риска" ). И конечно, такие конкретные применения, как расчет и прогнозирование индекса инфляции. Сейчас уже многим специалистам ясно, что годовой бухгалтерский баланс предприятия может быть использован для оценки его финансово-хозяйственной деятельности только с привлечением данных об инфляции. Различные области экономической теории и практики в настоящее время еще далеко не согласованы. При оценке и сравнении инвестиционных проектов принято использовать такие характеристики, как чистая текущая стоимость, внутренняя норма доходности, основанные на введении в рассмотрение изменения стоимости денежной единицы во времени (это осуществляется с помощью дисконтирования). А при анализе финансово-хозяйственной деятельности организации на основе данных бухгалтерской отчетности изменение стоимости денежной единицы во времени по традиции не учитывают.

Специалисты по контроллингу должны быть вооружены современными средствами информационной поддержки, в том числе средствами на основе высоких статистических технологий и эконометрики. Очевидно, преподавание должно идти впереди практического применения. Ведь как применять то, чего не знаешь?

Статистические технологии применяют для анализа данных двух принципиально различных типов. Один из них - это результаты измерений (наблюдений, испытаний, анализов, опытов и др.) различных видов, например, результаты управленческого или бухгалтерского учета, данные Госкомстата и др. Короче, речь идет об объективной информации. Другой - это оценки экспертов, на основе своего опыта и интуиции делающих заключения относительно экономических явлений и процессов. Очевидно, это - субъективная информация. В стабильной экономической ситуации, позволяющей рассматривать длинные временные ряды тех или иных экономических величин, полученных в сопоставимых условиях, данные первого типа вполне адекватны. В быстро меняющихся условиях приходятся опираться на экспертные оценки. Такая новейшая часть эконометрики, как статистика нечисловых данных, была создана как ответ на запросы теории и практики экспертных оценок ( "Статистика нечисловых данных" , "Эконометрические методы проведения экспертных исследований и анализа оценок экспертов" ).

Для решения каких экономических задач может быть полезна эконометрика? Практически для всех, использующих конкретную информацию о реальном мире. Только чисто абстрактные, отвлеченные от реальности исследования могут обойтись без нее. В частности, эконометрика необходима для прогнозирования, в том числе поведения потребителей, а потому и для планирования. Выборочные исследования, в том числе выборочный контроль, основаны на эконометрике. Но планирование и контроль - основа контроллинга. Поэтому эконометрика - важная составляющая инструментария контроллера, воплощенного в компьютерной системе поддержки принятия решений. Прежде всего оптимальных решений, которые предполагают опору на адекватные эконометрические модели. В производственном менеджменте это может означать, например, использование моделей экстремального планирования эксперимента (судя по накопленному опыту их практического использования, такие модели позволяют повысить выход полезного продукта на 30-300%).

Высокие статистические технологии в эконометрике предполагают адаптацию применяемых методов к меняющейся ситуации. Например, параметры прогностического индекса меняются вслед за изменением характеристик используемых для прогнозирования величин. Таков метод экспоненциального сглаживания. В соответствующем алгоритме расчетов значения временного ряда используются с весами. Веса уменьшаются по мере удаления в прошлое. Многие методы дискриминантного анализа основаны на применении обучающих выборок. Например, для построения рейтинга надежности банков можно с помощью экспертов составить две обучающие выборки - надежных и ненадежных банков. А затем с их помощью решать для вновь рассматриваемого банка, каков он - надежный или ненадежный, а также оценивать его надежность численно, т.е. вычислять значение рейтинга.

Один из способов построения адаптивных эконометрических моделей - нейронные сети (см., например, монографию [23]). При этом упор делается не на формулировку адаптивных алгоритмов анализа данных, а - в большинстве случаев - на построение виртуальной адаптивной структуры. Термин "виртуальная" означает, что "нейронная сеть" - это специализированная компьютерная программа, "нейроны" используются лишь при общении человека с компьютером. Методология нейронных сетей идет от идей кибернетики 1940-х годов. В компьютере создается модель мозга человека (весьма примитивная с точки зрения физиолога). Основа модели - весьма простые базовые элементы, называемые нейронами. Они соединены между собой, так что нейронные сети можно сравнить с хорошо знакомыми экономистам и инженерам блок-схемами. Каждый нейрон находится в одном из заданного множества состояний. Он получает импульсы от соседей по сети, изменяет свое состояние и сам рассылает импульсы. В результате состояние множества нейтронов изменяется, что соответствует проведению эконометрических вычислений.

Нейроны обычно объединяются в слои (как правило, два-три). Среди них выделяются входной и выходной слои. Перед началом решения той или иной задачи производится настройка. Во-первых, устанавливаются связи между нейронами, соответствующие решаемой задаче. Во-вторых, проводится обучение, т.е. через нейронную сеть пропускаются обучающие выборки, для элементов которых требуемые результаты расчетов известны. Затем параметры сети модифицируются так, чтобы получить максимальное соответствие выходных значений заданным величинам.

С точки зрения точности расчетов (и оптимальности в том или ином эконометрическом смысле) нейронные сети не имеют преимуществ перед другими адаптивными эконометрическими системами. Однако они более просты для восприятия. Надо отметить, что в эконометрике используются и модели, промежуточные между нейронными сетями и "обычными" системами регрессионных уравнений (одновременных и с лагами). Они тоже используют блок-схемы, как, например, универсальный метод моделирования связей экономических факторов ЖОК (этот метод описан в работе [24]).

Заметное место в математико-компьютерном обеспечении принятия решений в контроллинге занимают методы теории нечеткости (по-английски - fuzzy theory, причем термин fuzzy переводят на русский язык по-разному: нечеткий, размытый, расплывчатый, туманный, пушистый и др.). Начало современной теории нечеткости положено работой Л.А. Заде 1965г., хотя истоки прослеживаются со времен Древней Греции (об истории теории нечеткости см., например, книгу [12]). Это направление прикладной математики в последней трети ХХ в. получило бурное развитие. К настоящему времени по теории нечеткости опубликованы тысячи книг и статей, издается несколько международных журналов (половина - в Китае и Японии), постоянно проводятся международные конференции, выполнено достаточно много как теоретических, так и прикладных научных работ, практические приложения дали ощутимый технико-экономический эффект.

Основоположник рассматриваемого научного направления Лотфи А. Заде рассматривал теорию нечетких множеств как аппарат анализа и моделирования гуманистических систем, т.е. систем, в которых участвует человек. Его подход опирается на предпосылку о том, что элементами мышления человека являются не числа, а элементы некоторых нечетких множеств или классов объектов, для которых переход от "принадлежности" к "непринадлежности" не скачкообразен, а непрерывен. В настоящее время методы теории нечеткости используются почти во всех прикладных областях, в том числе при управлении качеством продукции и технологическими процессами.

Нечеткая математика и логика - мощный элегантный инструмент современной науки, который на Западе и на Востоке (в Японии, Китае, Корее) можно встретить в программном обеспечении сотен видов изделий - от игрушек и бытовых видеокамер до систем управления предприятиями. В России он был достаточно хорошо известен с начала 1970-х годов. Однако первая монография российского автора по теории нечеткости [12] была опубликована лишь в 1980 г. В дальнейшем проводившиеся раз в год всесоюзные конференции собирали около 100 участников - по мировым меркам немного. В настоящее время интерес к теории нечеткости среди экономистов и менеджеров растет.

При изложении теории нечетких множеств обычно не подчеркивается связь с вероятностными моделями. Между тем еще в середине 1970-х годов установлено (цикл соответствующих теорем приведен, в частности, в монографии [12], но это отнюдь не первая публикация), что теория нечеткости в определенном смысле сводится к теории случайных множеств, хотя эта связь и имеет, возможно, лишь теоретическое значение. В США подобные работы появились лет на пять позже.

Профессионалу в области контроллинга полезны многочисленные интеллектуальные инструменты анализа данных, относящиеся к высоким статистическим технологиям и эконометрике.

< Лекция 10 || Лекция 11: 12345 || Лекция 12 >
Михаил Агапитов
Михаил Агапитов

Не могу найти  требования по оформлению выпускной контрольной работы по курсу профессиональной переподготовки "Менеджмент предприятия"

Подобед Александр
Подобед Александр

Я нажал кнопку "начать курс" и почти его уже закончил, но для получения диплома на бумаге, нужно его же оплатить? Как оплатить?