Национальный исследовательский ядерный университет «МИФИ»
Опубликован: 16.10.2006 | Доступ: платный | Студентов: 198 / 37 | Оценка: 4.50 / 4.16 | Длительность: 23:53:00
ISBN: 978-5-9556-0054-3
Специальности: Разработчик аппаратуры
Лекция 13:

Применение ЦАП и АЦП

Аннотация: В лекции рассматриваются принципы работы аналого-цифровых и цифро-аналоговых преобразователей, о типах микросхем ЦАП и АЦП, их алгоритмах работы, параметрах, типовых схемах включения, а также о способах реализации на их основе некоторых часто встречающихся функций.

Как уже отмечалось во "Микросхемы и их функционирование" , цифро-аналоговые преобразователи ( ЦАП, DAC — "Digital-to-Analog Converter") и аналого-цифровые преобразователи ( АЦП, ADC — "Analog-to-Digital Converter") главным образом применяются для сопряжения цифровых устройств и систем с внешними аналоговыми сигналами, с реальным миром. При этом АЦП преобразует аналоговые сигналы во входные цифровые сигналы, поступающие на цифровые устройства для дальнейшей обработки или хранения, а ЦАП преобразует выходные цифровые сигналы цифровых устройств в аналоговые сигналы (см.рис. 2.12).

ЦАП и АЦП применяются в измерительной технике (цифровые осциллографы, вольтметры, генераторы сигналов и т.д.), в бытовой аппаратуре (телевизоры, музыкальные центры, автомобильная электроника и т.д.), в компьютерной технике (ввод и вывод звука в компьютерах, видеомониторы, принтеры и т.д.), в медицинской технике, в радиолокационных устройствах, в телефонии и во многих других областях. Применение ЦАП и АЦП постоянно расширяется по мере перехода от аналоговых к цифровым устройствам.

В качестве ЦАП и АЦП обычно применяются специализированные микросхемы, выпускаемые многими отечественными и зарубежными фирмами.

Сразу же надо отметить, что для грамотного и профессионального использования микросхем ЦАП и АЦП совершенно не достаточно знания цифровой схемотехники. Эти микросхемы относятся к аналого-цифровым, поэтому они требуют также знания аналоговой схемотехники, существенно отличающейся от цифровой. Практическое применение ЦАП и АЦП требует расчета аналоговых цепей, учета многочисленных погрешностей преобразования (как статических, так и динамических), знания характеристик и особенностей аналоговых микросхем (в первую очередь, операционных усилителей) и многого другого, что далеко выходит за рамки этой книги. Существует обширная литература, специально посвященная именно вопросам применения ЦАП и АЦП. Поэтому в данной лекции мы не будем говорить о специфике выбора и принципах включения конкретных микросхем ЦАП и АЦП мы будем рассматривать только основные особенности методов соединения ЦАП и АЦП с цифровыми узлами. Нас будет в первую очередь интересовать организация цифровых узлов, предназначенных для соединения с ЦАП и АЦП.

Применение ЦАП

В общем случае микросхему ЦАП можно представить в виде блока (рис. 13.1), имеющего несколько цифровых входов и один аналоговый вход, а также аналоговый выход.

Микросхема ЦАП

Рис. 13.1. Микросхема ЦАП

На цифровые входы ЦАП подается n-разрядный код N, на аналоговый вход — опорное напряжение Uоп (другое распространенное обозначение — UREF ). Выходным сигналом является напряжение Uвых (другое обозначение — UO ) или ток Iвых (другое обозначение — IO ). При этом выходной ток или выходное напряжение пропорциональны входному коду и опорному напряжению. Для некоторых микросхем опорное напряжение должно иметь строго заданный уровень, для других допускается менять его значение в широких пределах, в том числе и изменять его полярность (положительную на отрицательную и наоборот). ЦАП с большим диапазоном изменения опорного напряжения называется умножающим ЦАП, так как его можно легко использовать для умножения входного кода на любое опорное напряжение.

Кроме информационных сигналов, микросхемы ЦАП требуют также подключения одного или двух источников питания и общего провода. Обычно цифровые входы ЦАП обеспечивают совместимость со стандартными выходами микросхем ТТЛ.

Чаще всего в случае, если ЦАП имеет токовый выход, его выходной ток преобразуется в выходное напряжение с помощью внешнего операционного усилителя и встроенного в ЦАП резистора RОС, один из выводов которого выведен на внешний вывод микросхемы (рис. 13.2). Поэтому, если не оговорено иное, мы будем в дальнейшем считать, что выходной сигнал ЦАП — напряжение UO.

Преобразование выходного тока ЦАП в выходное напряжение

Рис. 13.2. Преобразование выходного тока ЦАП в выходное напряжение

Суть преобразования входного цифрового кода в выходной аналоговый сигнал довольно проста. Она состоит в суммировании нескольких токов (по числу разрядов входного кода), каждый последующий из которых вдвое больше предыдущего. Для получения этих токов используются или транзисторные источники тока, или резистивные матрицы, коммутируемые транзисторными ключами.

В качестве примера на рис. 13.3 показано 4-разрядное (n = 4) цифро-аналоговое преобразование на основе резистивной матрицы R–2R и ключей (в реальности используются ключи на основе транзисторов). Правому положению ключа соответствует единица в данном разряде входного кода N (разряды D0 \dots D3). Операционный усилитель может быть как встроенным (в случае ЦАП с выходом по напряжению), так и внешним (в случае ЦАП с выходом по току).

4-разрядное цифро-аналоговое преобразование

Рис. 13.3. 4-разрядное цифро-аналоговое преобразование

Первым (левым по рисунку) ключом коммутируется ток величиной UREF/2R, вторым ключом — ток UREF/4R, третьим — ток UREF/8R, четвертым — ток UREF/16R. То есть токи, коммутируемые соседними ключами, различаются вдвое, как и веса разрядов двоичного кода. Токи, коммутируемые всеми ключами, суммируются и преобразуются в выходное напряжение с помощью операционного усилителя с сопротивлением RОС=R в цепи отрицательной обратной связи.

При правом положении каждого ключа (единица в соответствующем разряде входного кода ЦАП ) ток, коммутируемый этим ключом, поступает на суммирование. При левом положении ключа (нуль в соответствующем разряде входного кода ЦАП ) ток, коммутируемый этим ключом, на суммирование не поступает.

Суммарный ток IO от всех ключей создает на выходе операционного усилителя напряжение UO=IO RОС=IOR. То есть вклад первого ключа (старшего разряда кода) в выходное напряжение составляет UREF/2, второго — UREF/4, третьего — UREF/8, четвертого — UREF/16. Таким образом, при входном коде N = 0000 выходное напряжение схемы будет нулевым, а при входном коде N = 1111 оно будет равно –15UREF/16.

В общем случае выходное напряжение ЦАП при RОС = R будет связано со входным кодом N и опорным напряжением UREF простой формулой

UВЫХ = –N • UREF 2-n

где n — количество разрядов входного кода. Знак минус получается из-за инверсии сигнала операционным усилителем. Эту связь можно проиллюстрировать также табл. 13.1.

Таблица 13.1. Преобразование ЦАП в однополярном режиме
Входной код N Выходное напряжение UВЫХ
000 \dots 000 0
000 \dots 001 -2-n UREF
\dots \dots
100 \dots 000 -2-1 UREF
\dots \dots
111 \dots 111 -(1-2-n) UREF

Некоторые микросхемы ЦАП предусматривают возможность работы в биполярном режиме, при котором выходное напряжение изменяется не от нуля до UREF, а от –UREF до +UREF. При этом выходной сигнал ЦАП UВЫХ умножается на 2 и сдвигается на величину UREF. Связь между входным кодом N и выходным напряжением UВЫХ будет следующей:

UВЫХ=UREF(1–N•21–n)