Национальный исследовательский ядерный университет «МИФИ»
Опубликован: 16.10.2006 | Доступ: свободный | Студентов: 10298 / 3591 | Оценка: 4.50 / 4.16 | Длительность: 23:53:00
ISBN: 978-5-9556-0054-3
Специальности: Разработчик аппаратуры
Лекция 13:

Применение ЦАП и АЦП

Схема такого АЦП (рис. 13.16) включает в себя резистивный делитель из 2n одинаковых резисторов, который делит опорное напряжение на (2n–1) уровней.

3-разрядный АЦП параллельного типа

Рис. 13.16. 3-разрядный АЦП параллельного типа

Входное напряжение сравнивается с помощью компараторов с уровнями, формируемыми делителем напряжения. Выходные сигналы компараторов с помощью шифратора преобразуются в n-разрядный двоичный код. Шифратор выдает на выход номер последнего из сработавших (то есть выдавших сигнал логической единицы) компараторов. Например, в случае 3-разрядного АЦП (на рисунке) при величине входного напряжения от 0 до 1/8 опорного напряжения выходной код будет 000, при входном напряжении от 1/8 до 2/8 опорного напряжения сработает первый компаратор, что даст выходной код 001, при входном напряжении от 2/8 до 3/8 опорного напряжения сработают компараторы 1 и 2, что даст выходной код 010, и т.д. Процесс преобразования происходит в параллельном АЦП очень быстро, поэтому частота преобразования может достигать сотен мегагерц.

Для повышения быстродействия в параллельном АЦП иногда применяется конвейерный принцип: выходной код компараторов записывается в (2n–1) -разрядный параллельный регистр, показанный на рис. 13.16. Выходной код шифратора также записывается в n-разрядный параллельный регистр. Оба регистра в этом случае тактируются одним и тем же тактовым сигналом. Это снижает требования к быстродействию компараторов и шифратора. Правда, выходной код АЦП задерживается из-за таких регистров на два периода таковой частоты.

Громоздкость структуры параллельного АЦП приводит к тому, что в некоторых АЦП применяется смешанный параллельно-последовательный принцип. Это несколько снижает быстродействие подобного АЦП по сравнению с обычным параллельным АЦП, но зато позволяет получить большое число разрядов, не увеличивая количество компараторов до (2n–1).

Для того чтобы АЦП любого типа работал с использованием всех своих возможностей, необходимо обеспечить согласование диапазона изменения входного аналогового сигнала с допустимым диапазоном (динамическим диапазоном) входного напряжения АЦП.

На рис. 13.17 показано четыре возможных случая соотношения динамического диапазона АЦП (от 0 до UREF или от UREF1 до UREF2) и входного сигнала. В случаях а и б входной сигнал меньше динамического диапазона, поэтому АЦП будет работать правильно, но не будет использовать всех своих возможностей. В случае в входной сигнал слишком большой, поэтому часть его значений не будет преобразована. Только в случае г АЦП действительно будет работать как n-разрядный и будет преобразовывать все значения входного сигнала. Для согласования входного сигнала с динамическим диапазоном АЦП можно применять усилители, аттенюаторы, схемы сдвига. В некоторых случаях согласование может быть достигнуто простым выбором величин опорных напряжений.

Соотношение входного сигнала и динамического диапазона АЦП

Рис. 13.17. Соотношение входного сигнала и динамического диапазона АЦП
Уменьшение количества разрядов выходного кода АЦП

Рис. 13.18. Уменьшение количества разрядов выходного кода АЦП

Иногда бывает необходимо уменьшить количество разрядов АЦП. В этом случае нужное количество младших разрядов выходного кода микросхемы просто не используется. На рис. 13.18 показано использование 10-разрядного АЦП в качестве 8-разрядного.

Обратная задача — увеличение разрядности АЦП — встречается чаще. Существует ряд типичных схемотехнических решений по объединению нескольких микросхем АЦП для увеличения количества разрядов выходного кода, но большинство этих решений требует сложных расчетов результирующих погрешностей преобразования и применения аналоговых узлов. Мы не будем их здесь рассматривать. Отметим только, что при возникновении задачи увеличения разрядности надо прежде всего попытаться найти микросхему с нужным количеством разрядов, и только потом рассматривать возможности объединения нескольких микросхем АЦП.

Рассмотрим несколько типичных схем включения АЦП, используемых в аналого-цифровых системах.

Фиксатор превышения входным сигналом установленного порога

Рис. 13.19. Фиксатор превышения входным сигналом установленного порога

Первая схема (рис. 13.19) предназначена для фиксации момента превышения входным аналоговым сигналом заданного порогового напряжения. Схема вырабатывает выходной сигнал (положительный фронт) тогда, когда входной аналоговый сигнал становится больше установленного уровня, причем уровень этот задается цифровым кодом порога. Код порога сравнивается с выходными кодами АЦП с помощью микросхемы компаратора кодов. Выходной сигнал компаратора кодов записывается в триггер по сигналу RDY с АЦП, что позволяет исключить влияние коротких импульсов, возникающих на выходе компаратора в момент изменения входных кодов. Применение этого триггера задерживает выходной сигнал на один такт.

Может показаться, что применение АЦП в данном случае не оправданно, избыточно. Но надо учитывать, что в аналого-цифровых системах АЦП, преобразующий входной сигнал в последовательность кодов, как правило, уже есть, поэтому дополнительного АЦП не требуется, достаточно только включить компаратор кодов и триггер.

Али Анарбек
Али Анарбек
Илья Леонтьев
Илья Леонтьев

по заданию преподавателя, надо после каждого теста делать скриншот, но я решил вначале сделать все тесты, а потом делать скрин и теперь не могу вообще зайти в эти тесты