Массивы
Понижение степени полинома
Если для полинома n-й степени найден корень , то можно понизить степень полинома, построив полином степени , у которого все корни совпадают с корнями полинома за исключением того, что у него нет корня .
Запишем соотношение, связывающее полиномы:
Учитывая соотношение 6.3 о равенстве двух полиномов одной степени, можно выписать соотношение, связывающее коэффициенты этих полиномов. Эти соотношения нетрудно разрешить относительно неизвестных коэффициентов . В результате получим:
( 6.4) |
Заметьте, неизвестных всего , а уравнений можно построить - . Но последнее уравнение является следствием предыдущих и используется для контроля вычислений.
К новому полиному можно применить тот же процесс - найти его корень и понизить затем степень полинома. Реально понижение степени не намного упрощает задачу отыскания корней, так что чаще всего проще искать корни исходного полинома, изменяя начальные приближения в итерационном процессе или отыскивая различные интервалы, на которых полином меняет свой знак.
Нахождение коэффициентов полинома по его корням
До сих пор рассматривалась задача отыскания корней полинома с заданными коэффициентами. Иногда приходится решать обратную задачу - найти коэффициенты полинома, если известны его корни - . Полиномов с одинаковыми корнями существует бесчисленное множество. Однако среди них существует единственный полином с коэффициентом , равным единице. Этот полином называется приведенным, его-то и будем строить. Все остальные полиномы получаются из приведенного полинома умножением всех коэффициентов на произвольное число , от которого требуется лишь, чтобы оно не было равно нулю. Поэтому для однозначного решения задачи требуется задать n корней и коэффициент при старшем члене полинома. Тогда можно записать следующее равенство:
Для нахождения коэффициентов полинома воспользуемся, как обычно, соотношением 6.3. Но применить его напрямую сложно. Поэтому воспользуемся процессом, обратным к процессу понижения степени. Построим вначале - полином первой степени, у которого является единственным корнем. Затем повысим степень и построим полином второй степени - , у которого появляется еще один корень - . Продолжая этот процесс, дойдем до искомого полинома . При вычислении коэффициентов нового полинома будем использовать коэффициенты уже посчитанного полинома на единицу меньшей степени. Получающиеся в результате соотношения близки к тем, что приведены для случая понижения степени полинома.
Коэффициенты полинома первой степени выписываются явно:
Коэффициенты полинома k-й степени вычисляются через коэффициенты полинома степени k-1:
Переходя к коэффициентам, получим следующие уравнения:
( 6.5) |
В соотношении 6.5 через обозначены коэффициенты полинома степени . На самом деле схема безопасна и позволяет считать коэффициенты на том же месте, не требуя дополнительной памяти. Приведу алгоритм вычисления коэффициентов полинома по его корням в виде схемы, приближенной к языку C#.
Дано:
- - коэффициент при старшем члене полинома ;
- - степень полинома;
- - массив корней полинома ;
Вычислить:
- массив - массив коэффициентов полинома .
//Вычисляем коэффициенты полинома первой степени a[1]= 1; a[0] = -x[0]; //цикл по числу полиномов for(int k=2;k<=n; k++) { //Вычисляем коэффициенты полинома степени k //Вначале старший коэффициент a[k]= a[k-1]; //затем остальные коэффициенты, кроме последнего for(int i=k-1;i>0; i--) { a[i] = a[i-1]- a[i]*x[k-1]; } //теперь младший коэффициент a[0]= -a[0]*x[k-1]; } //Последний этап - умножение коэффициентов на an for(int i=0; i<=n; i++) a[i] = a[i]*an;
Полином Лагранжа
Пусть на плоскости заданы точка: . Полиномом Лагранжа называется полином n-й степени, проходящий через все точки . Если точки не образуют возвратов, то такой полином существует и является единственным. Под возвратом понимается ситуация, когда существуют две точки и такие, что .
Как построить такой полином? Лагранж предложил следующий алгоритм. Полином строится как сумма полиномов n-й степени:
Каждый из полиномов , входящих в сумму, строится следующим образом. Корнями полинома являются все точки за исключением точки . Единственность обеспечивается за счет того, что коэффициент при старшем члене an подбирается так, чтобы полином проходил через точку . В записи Лагранжа полином выглядит следующим образом:
( 6.6) |
В записи 6.6 в числителе находится приведенный полином, построенный по корням, а , деленное на знаменатель в формуле 6.6, задает - старший коэффициент полинома.
Условия, накладываемые на полиномы , обеспечивают выполнение требований к полиному Лагранжа - сумма полиномов будет полиномом, проходящим через все заданные точки.
Поскольку алгоритм построения приведенного полинома по его корням уже разобран, то схема построения полинома Лагранжа может выглядеть так:
//Полином Лагранжа определяется как сумма из n+1 //полиномов Pk, для которых известны корни. for(int k=0; k<=n; k++) { //Задание корней для полинома Pk for(int i =0; i<k; i++) roots[i] = X[i]; for(int i =k+1; i<=n; i++) roots[i-1] = X[i]; //Вычисление коэффициентов приведенного полинома по его корням coefk = CalcCoefFromRoots(roots); //вычисление An - старшего коэффициента полинома. An = Y[k] / HornerP(coefk,X[k]); //Добавление очередного полинома Pk к PL - сумме полиномов for(int i =0; i<=n; i++) { coefL[i]= coefL[i]+An*coefk[i]; } }
В этой схеме:
- X и Y - массивы, задающие декартовы координаты точек, через которые проходит полином Лагранжа,
- n - степень полинома,
- roots - массив корней приведенного полинома ,
- coefk - массив его коэффициентов,
- An - старший коэффициент полинома, вычисляемый из условия прохождения полинома через точку с координатами X[k], Y[k],
- coefL - массив коэффициентов полинома Лагранжа,
- HornerP - метод, вычисляющий по схеме Горнера значение полинома по его коэффициентам и значению координаты x,
- CalcCoefFromRoots - метод, вычисляющий массив коэффициентов приведенного полинома по его корням.