Опубликован: 01.06.2007 | Уровень: специалист | Доступ: платный | ВУЗ: Московский государственный университет путей сообщения
Лекция 16:

Перспективные нейросетевые технологии

16.3. Компьютерный человечек КОМПИ

Мы видим, какое значение компьютерным играм придает самый богатый человек планеты Гейтс, потрясая игровой приставкой нового поколения перед миллиардами телезрителей. Мы вволю наигрались в холодную войну и можем себе тоже позволить подумать о радости и удовольствии, а также – о бизнесе!..

С этим человечком мы уже встречались в "Основы нейросетевых технологий" . Сформулируем идею окончательно.

\dots Все чаще посещает нас мечта жизни: пора объединить все разнообразие направлений творческого применения компьютера как средства, инструмента и объекта искусства. Это может быть материализовано виртуальной структурой под названием Computer Art Studio и отражать следующие направления: трехмерная и плоская анимация, графика и живопись; туристические объекты и исторические реконструкции; нейрокомпьютерные игры и анимация; литературный и музыкальный дизайн; фантастика и др.

Как видите, вполне справедливо, что благодаря логической цепочке "интеллект \to моделирование \to искусство", нейросетевые технологии должны занять подобающее им место в рядах Великого Искусства \dots

Представим себе отрока, поздним утром вставшего в солнечный день весенних каникул и, слегка протерев заспанные глаза, уже включающего компьютер.

В "окне" появляется милая, упитанная мордашка (рис. 16.4). Тут же, в углу экрана, "мышкой" или "джойстиком" наш "хорошист" с английским уклоном не очень твердо, но вполне узнаваемо рисует ананас. Мордашка, в которой мы узнаем КОМПИ – популярного (пока неизвестного) героя компьютерного монитора, приходит в неописуемый восторг и радость. Все мышцы его лица, ведающие мимикой и жестами соответствующего морально-психологического состояния, приходят в движение.

КОМПИ

Рис. 16.4. КОМПИ

Тогда наш юный джентльмен стирает рисунок. КОМПИ постепенно успокаивается, приходя в состояние недоуменного ожидания. И вот, после некоторых размышлений, художник изображает \dots велосипед.

"Что это такое?" – вопрошает КОМПИ.

"Это – велосипед, на нем катаются", – следует ответ.

Дальнейшая пауза свидетельствует о том, что происходит обучение нейросети. Ситуация, которая введена на нейроны входного слоя, образующие экран для рисования, связывается (возможно, методом опорного пути) с нейроном выходного слоя (или – коры). Этот нейрон будет теперь соответствовать эталону – велосипеду. Этот же нейрон, в свою очередь, должен определить возбуждение нейрона, ведающего действием "то, на чем катаются". Запускаются программы, имитирующие действия КОМПИ, и он неуклюже, конечно же, неправильно и смешно – как его учили, например, обращаться с осликом, – подминает под себя копию введенного изображения – велосипед.

Возникает потребность расширения (в условиях, конечно, производящей компании) возможности игры, введя специальные программы имитации красивого велосипеда (распознанного по корявому эталону) и всех действий КОМПИ по езде на нем.

Средствами трехмерной графики, например 3D Studio MAX, производя деформации объема в направлении сокращающихся мышц, можно имитировать действия и мимику. Состав же программных процедур, включаемых в каждом такте управления для такой деформации, и их параметры определяются возбуждением нейронов выходного слоя сети при распознавании заданной ситуации – рисунка на экране. Мы еще не установили точно, может ли это МАХ. Однако ясно, что эти действия достигаются средствами двумерной и трехмерной компьютерной графики, на основе управления деформацией объектов. Мы не исключаем, что здесь потребуется разработка новых систем компьютерной графики, основанных на "мышечной" деформации, о чем поговорим далее.

Например, создав объект в плоской или трехмерной памяти, мы можем, дважды "топнув" мышкой, задать точку начала и точку конца "мышцы", зафиксировав в списке эту "мышцу" как новый невидимый объект. Затем мы можем сокращать и растягивать "мышцу", что сопровождается расчетом адресов такой пересылки информации, при которой мы увидим, например, сокращение или растяжение рта в улыбке и другие движения.

Таким образом, с помощью "мышц" мы можем осуществлять программируемую анимацию. Создав ряд таких программ различных действий и осуществив их запуск в зависимости от решений нейросети, мы можем создать комплекс интересных игр и даже сценических постановок.

Таким образом, развитие игры, выпуск все более новых модификаций, расширяющих возможности, может в конце концов привести к весьма сложному и многообразному взаимодействию юного существа, влюбленного в компьютер, и компьютерного человечка, живущего в нем.

Можно представить себе и более широкое полотно \dots

Представим себе построенные в ряд компьютеры локальной вычислительной сети. Мы сидим за отдельно стоящим компьютером и "мышкой" на его экране рисуем различные предметы: сладкие, горькие, радующие и неприятные. И начинают оживать на мониторах зверюшки, целый зоосад. Они радуются морковке, катаются на велосипеде, огорчаются при виде неприятного, учатся новому и т.д.

И это не только весело. Это – серьезный и важный принцип управления, который может быть использован во многих производственных и зрелищных приложениях.

Дерзайте, предприниматели-программисты! Мы раздаем идеи бесплатно!..

Эльвира Герейханова
Эльвира Герейханова

Раньше это можно было зделать просто нажав на тест и посмотреть результаты а сейчас никак

Елена Лобынцева
Елена Лобынцева
Помогите разобраться как можно подобрать НС для распознавания внутренней области выпуклого многоугольника?
Дмитрий Степанов
Дмитрий Степанов
Россия, Москва, МГТУ им. Баумана, 2006
Дмитрий Степаненко
Дмитрий Степаненко
Россия