В лекции 3 часть номер 2 приведён пример нахождения транзитивного замыкания по матрице смежности. Из примера для обратного транзитивного замыкания видно, что путь для достижения вершины х6 в вершину х3 равен 3, а не 2, как показано в табличном примере. Мне кажется, что в лекции ошибка. |
Достижимость в графах
Нахождение множества вершин, входящих в путь
Если необходимо узнать о вершинах графа, входящих в эти пути, то следует вспомнить определения прямого и обратного транзитивных замыканий. Так как T+(xi) – это множество вершин, в которые есть пути из вершины xi, а T–(хj) – множество вершин, из которых есть пути в xj, то – множество вершин, каждая из которых принадлежит, по крайней мере, одному пути, идущему от xi к xj. Эти вершины называются существенными или неотъемлемыми относительно двух концевых вершин xi и xj. Все остальные вершины графа называются несущественными или избыточными, поскольку их удаление не влияет на пути от xi к xj.
Так для графа на рис. 4.2 нахождение вершин, входящих в путь, например из вершины х2 в вершину х4, сводится к нахождению .
Матричный метод нахождения путей в графах
Матрица смежности полностью определяет структуру графа. Возведем матрицу смежности в квадрат по правилам математики. Каждый элемент матрицы А2 определяется по формуле
Слагаемое в формуле равно 1 тогда и только тогда, когда оба числа aij и ajk равны 1, в противном случае оно равно 0. Поскольку из равенства aij = ajk = 1 следует существование пути длины 2 из вершины xi в вершину хk , проходящего через вершину xj , то ( i -й, k -й) элемент матрицы А2 равен числу путей длины 2, идущих из xi в хk .
На таблице 4.1a представлена матрица смежности графа, изображенного на рис. 4.2. Результат возведения матрицы смежности в квадрат А2 показан на таблице 4.1б.
Так "1", стоящая на пересечении второй строки и четвертого столбца, говорит о существовании одного пути длиной 2 из вершины х2 к вершине х4 . Действительно, как видим в графе на рис. 4.2, существует такой путь: a6, a5 . "2" в матрице A2 говорит о существовании двух путей длиной 2 от вершины х3 к вершине х6 : a8, a4 и a10, a3 .
Аналогично для матрицы смежности, возведенной в третью степень A3 ( таблица 4.1в), a (3) ik равно числу путей длиной 3, идущих от xi к хk . Из четвертой строки матрицы A3 видно, что пути длиной 3 существуют: один из х4 в х4(a9, a8, a5), один из х4 в х5(a9, a10, a6) и два пути из х4 в х6(a9, a10, a3 и a9, a8, a4). Матрица A4 показывает существование путей длиной 4 ( таблица 4.1г).
Таким образом, если a р ik является элементом матрицы Aр ,то a р ik равно числу путей (не обязательно орцепей или простых орцепей) длины р, идущих от xi к хk .