Опубликован: 10.09.2007 | Уровень: специалист | Доступ: свободно | ВУЗ: Московский государственный университет имени М.В.Ломоносова
Лекция 2:
Вычисление определителей
Определитель Вандермонда
Теорема 6.9.1.

Доказательство. Проведем индукцию по n (начало индукции n=2 ). Пусть утверждение верно для n'<n. Тогда, применяя элементарные преобразования столбцов
,
,...,
и предположение индукции, получаем

Следствие 6.9.2.
тогда и только тогда, когда
при
(т. е. когда все элементы a1,a2,...,an различны).
Теорема 6.9.3 (интерполяционная формула Лагранжа).
- Если a1,...,an - различные элементы поля K, b1,...,bn - любые элементы поля K, то существует и единственный многочлен
такой, что
и f(ai)=bi для всех
(здесь
- степень многочлена f(x) ). - Этот многочлен имеет вид(здесь

,
означает, что эти множители не входят в произведения). - Интерполяционный многочлен
,
, для которого f(ai)=bi, i=1,...,n, можно находить методом Ньютона в видепри этом коэффициенты определяются последовательно: при x=a_1 имеем![\begingroup
\setlength{\multlinegap}{0pt}
\begin{mult}
f(x)={}
\\
{}=\lambda_0 +\lambda_1 (x-a_1)+\lambda_2 (x-a_1)(x-a_2)+...+
\lambda_{n-1} \smash[t]{\prod_{i=1}^{n-1} (x-a_i)},
\end{mult}
\endgroup%](/sites/default/files/tex_cache/dfaf1bdc6e82d8f31771696ab7ae2b7b.png)
, т. е.
; при x=a2 имеем
, т. е.
;...; при x=an-1 получаеми находим
(коэффициент при
отличен от нуля); полагая x=an, имеем коэффициент
при
в равенствеи находим
.
- Будем искать многочлен f(x)=f0+f1x+...+fn-1xn-1,
где f0,f1,...,fn-1 - неизвестные коэффициенты (элементы поля K ), такой, чтоОпределитель этой системы
поскольку все элементы a1,...,an различны. Поэтому такой многочлен f(x) существует (и единственный).
- Очевидно, что приведенный многочлен в форме Лагранжаудовлетворяет двум условиям:


- Многочлен f(x) в форме Ньютона удовлетворяет двум условиям:

Упражнение 6.9.4. Пусть
,
, A=(aij), где
.Тогда |A|>0.
Упражнение 6.9.5. Пусть
, где
,
. Тогда
