Подскажите, пожалуйста, планируете ли вы возобновление программ высшего образования? Если да, есть ли какие-то примерные сроки? Спасибо! |
Качество ПО и методы его контроля
Еще одна классификация видов тестирования основана на том уровне, на который оно нацелено. Эти же разновидности тестирования можно связать с фазой жизненного цикла, на которой они выполняются.
-
Модульное тестирование (unit testing) предназначено для проверки правильности отдельных модулей, вне зависимости от их окружения. При этом проверяется, что если модуль получает на вход данные, удовлетворяющие определенным критериям корректности, то и результаты его корректны. Для описания критериев корректности входных и выходных данных часто используют программные контракты — предусловия, описывающие для каждой операции, на каких входных данных она предназначена работать, постусловия, описывающие для каждой операции, как должны соотноситься входные данные с возвращаемыми ею результатами, и инварианты, определяющие критерии целостности внутренних данных модуля.
Модульное тестирование является важной составной частью отладочного тестирования, выполняемого разработчиками для отладки написанного ими кода.
-
Интеграционное тестирование (integration testing) предназначено для проверки правильности взаимодействия модулей некоторого набора друг с другом. При этом проверяется, что в ходе совместной работы модули обмениваются данными и вызовами операций, не нарушая взаимных ограничений на такое взаимодействие, например, предусловий вызываемых операций. Интеграционное тестирование также используется при отладке, но на более позднем этапе разработки.
-
Системное тестирование (system testing) предназначено для проверки правильности работы системы в целом, ее способности правильно решать поставленные пользователями задачи в различных ситуациях.
Системное тестирование выполняется через внешние интерфейсы ПО и тесно связано с тестированием пользовательского интерфейса (или через пользовательский интерфейс), проводимым при помощи имитации действий пользователей над элементами этого интерфейса. Частными случаями этого вида тестирования являются тестирование графического пользовательского интерфейса (Graphical User Interface, GUI) и пользовательского интерфейса Web-приложений (WebUI).
Если интеграционное и модульное тестирование чаще всего проводят, воздействуя на компоненты системы при помощи операций предоставляемого ими программного интерфейса (Application Programming Interface, API), то на системном уровне без использования пользовательского интерфейса не обойтись, хотя тестирование через API в этом случае также вполне возможно.
Основной недостаток тестирования состоит в том, что проводить его можно, только когда проверяемый элемент программы уже разработан. Снизить влияние этого ограничения можно, подготавливая тесты (а это — наиболее трудоемкая часть тестирования ) на основе требований заранее, когда исходного кода еще нет. Подход опережающей разработки тестов с успехом используется, например, в рамках XP.
Проверка на моделях
Проверка свойств на моделях (model checking) [10] — проверка соответствия ПО требованиям при помощи формализации проверяемых свойств, построения формальных моделей проверяемого ПО (чаще всего в виде автоматов различных видов) и автоматической проверки выполнения этих свойств на построенных моделях. Проверка свойств на моделях позволяет проверять достаточно сложные свойства автоматически, при минимальном участии человека. Однако она оставляет открытым вопрос о том, насколько выявленные свойства модели можно переносить на само ПО.
Обычно при помощи проверки свойств на моделях анализируют два вида свойств алгоритмов, использованных при построении ПО. Свойства безопасности (safety properties) утверждают, что нечто нежелательное никогда не случится в ходе работы ПО. Свойства живучести (liveness properties) утверждают, наоборот, что нечто желательное при любом развитии событий произойдет в ходе его работы.
Примером свойства первого типа служит отсутствие взаимных блокировок (deadlocks). Взаимная блокировка возникает, если каждый из группы параллельно работающих в проверяемом ПО процессов или потоков ожидает прибытия данных или снятия блокировки ресурса от одного из других, а тот не может продолжить выполнение, ожидая того же от первого или от третьего процесса, и т.д.
Примером свойства живости служит гарантированная доставка сообщения, обеспечиваемая некоторыми протоколами — как бы ни развивались события, если сетевое соединение между машинами будет работать, посланное с одной стороны (процессом на первой машине) сообщение будет доставлено другой стороне (процессу на второй машине).
В классическом подходе к проверке на моделях проверяемые свойства формализуются в виде формул так называемых временных логик. Их общей чертой является наличие операторов "всегда в будущем" и "когда-то в будущем". Заметим, что второй оператор может быть выражен с помощью первого и отрицания — то, что некоторое свойство когда-то будет выполнено, эквивалентно тому, что отрицание этого свойства не будет выполнено всегда. Свойства безопасности легко записываются в виде "всегда будет выполнено отрицание нежелательного свойства", а свойства живости — в виде "когда-то обязательно будет выполнено желаемое".
Проверяемая программа в классическом подходе моделируется при помощи конечного автомата. Проверка, выполняемая автоматически, состоит в том, что для всех достижимых при работе системы состояний этого автомата проверяется нужное свойство. Если оно оказывается выполненным, выдается сообщение об успешности проверки, если нет — выдается трасса, последовательность выполнения отдельных шагов программы, моделируемых переходами автомата, приводящая из начального состояния в такое, в котором нужное свойство нарушается. Эта трасса используется для анализа происходящего и исправления либо программы, либо модели, если ошибка находится в ней.
Основная проблема этого подхода — огромное, а часто и бесконечное, количество состояний в моделях, достаточно хорошо отражающих поведение реальных программ. Для борьбы с комбинаторным взрывом состояний применяются различные методы оптимизации представления автомата, выделения и поиска состояний, существенных для выполнения проверяемого свойства.