Прошел экстерном экзамен по курсу перепордготовки "Информационная безопасность". Хочу получить диплом, но не вижу где оплатить? Ну и соответственно , как с получением бумажного документа? |
Алгоритмы симметричного шифрования. Часть 2
Дешифрование
Процесс дешифрования аналогичен процессу шифрования. Дешифрование состоит в использовании зашифрованного текста в качестве входа в ту же самую структуру IDEA, но с другим набором ключей. Дешифрующие ключи U1, . . . , U52 получаются из шифрующих ключей следующим образом:
- Первые четыре подключа i-ого раунда дешифрования получаются из первых четырех подключей (10-i)-го раунда шифрования, где стадия заключительного преобразования считается 9-м раундом. Первый и четвертый ключи дешифрования эквивалентны мультипликативной инверсии по модулю ( 216 + 1 ) соответствующих первого и четвертого подключей шифрования. Для раундов со 2 по 8 второй и третий подключи дешифрования эквивалентны аддитивной инверсии по модулю ( 216 ) соответствующих третьего и второго подключей шифрования. Для раундов 1 и 9 второй и третий подключи дешифрования эквивалентны аддитивной инверсии по модулю ( 216 ) соответствующих второго и третьего подключей шифрования.
- Для первых восьми раундов последние два подключа i раунда дешифрования эквивалентны последним двум подключам ( 9 - i ) раунда шифрования.
Для мультипликативной инверсии используется нотация Zj-1, т.е.:
Так как 216 + 1 является простым числом, каждое ненулевое целое Zj <= 216 имеет уникальную мультипликативную инверсию по модулю ( 216 + 1 ). Для аддитивной инверсии используется нотация ( -Zj ), таким образом, мы имеем: -Zj + Zj = 0 mod (216)
Для доказательства того, что алгоритм дешифрования с соответствующими подключами имеет корректный результат, рассмотрим одновременно процессы шифрования и дешифрования. Каждый из восьми раундов разбит на две стадии преобразования, первая из которых называется трансформацией, а вторая шифрованием.
Рассмотрим преобразования, выполняемые в прямоугольниках на обоих рисунках. При шифровании поддерживаются следующие соотношения на выходе трансформации:
Первая стадия первого раунда процесса дешифрования поддерживает следующие соотношения:
Подставляя соответствующие значения, получаем:
Таким образом, выход первой стадии процесса дешифрования эквивалентен входу последней стадии процесса шифрования за исключением чередования второго и третьего блоков. Теперь рассмотрим следующие отношения:
Где MAR(X, Y) есть правый выход МА структуры с входами Х и Y, и MAL(X, Y) есть левый выход МА структуры с входами Х и Y. Теперь получаем
Аналогично мы имеем
V12 = I83 V13 = I82 V14 = I84
Таким образом, выход второй стадии процесса дешифрования эквивалентен входу предпоследней стадии процесса шифрования за исключением чередования второго и третьего подблоков. Аналогично можно показать, что
V81 = I11 V82 = I13 V83 = I12 V84 = I14
Наконец, так как выход трансформации процесса дешифрования эквивалентен первой стадии процесса шифрования за исключением чередования второго и третьего подблоков, получается, что выход всего процесса шифрования эквивалентен входу процесса шифрования.