организовать двустороннюю поочередную связь процесса-родителя и процесса-ребенка через pipe, используя для синхронизации сигналы sigusr1 и sigusr2. |
Средства System V IPC. Организация работы с разделяемой памятью в UNIX. Понятие нитей исполнения (thread)
Понятие о нити исполнения (thread) в UNIX. Идентификатор нити исполнения. Функция pthread_self()
На лекции 4 мы говорили, что во многих современных операционных системах существует расширенная реализация понятия процесс, когда процесс представляет собой совокупность выделенных ему ресурсов и набора нитей исполнения. Нити процесса разделяют его программный код, глобальные переменные и системные ресурсы, но каждая нить имеет собственный программный счетчик, свое содержимое регистров и свой стек. Поскольку глобальные переменные у нитей исполнения являются общими, они могут использовать их, как элементы разделяемой памяти, не прибегая к механизму, описанному выше.
В различных версиях операционной системы UNIX существуют различные интерфейсы, обеспечивающие работу с нитями исполнения. Мы кратко ознакомимся с некоторыми функциями, позволяющими разделить процесс на thread'ы и управлять их поведением, в соответствии со стандартом POSIX. Нити исполнения, удовлетворяющие стандарту POSIX, принято называть POSIX thread'ами или, кратко, pthread'ами.
К сожалению, операционная система Linux не полностью поддерживает нити исполнения на уровне ядра системы. При создании нового thread'а запускается новый традиционный процесс, разделяющий с родительским традиционным процессом его ресурсы, программный код и данные, расположенные вне стека, т.е. фактически действительно создается новый thread, но ядро не умеет определять, что эти thread'ы являются составными частями одного целого. Это "знает" только специальный процесс-координатор, работающий на пользовательском уровне и стартующий при первом вызове функций, обеспечивающих POSIX интерфейс для нитей исполнения. Поэтому мы сможем наблюдать не все преимущества использования нитей исполнения (в частности, ускорить решение задачи на однопроцессорной машине с их помощью вряд ли получится), но даже в этом случае thread'ы можно задействовать как очень удобный способ для создания процессов с общими ресурсами, программным кодом и разделяемой памятью.
Каждая нить исполнения, как и процесс, имеет в системе уникальный номер – идентификатор thread'a. Поскольку традиционный процесс в концепции нитей исполнения трактуется как процесс, содержащий единственную нить исполнения, мы можем узнать идентификатор этой нити и для любого обычного процесса. Для этого используется функция pthread_self() . Нить исполнения, создаваемую при рождении нового процесса, принято называть начальной или главной нитью исполнения этого процесса.
Создание и завершение thread'а. Функции pthread_create(), pthread_exit(), pthread_join()
Нити исполнения, как и традиционные процессы, могут порождать нити-потомки, правда, только внутри своего процесса. Каждый будущий thread внутри программы должен представлять собой функцию с прототипом
void *thread(void *arg);
Параметр arg передается этой функции при создании thread'a и может, до некоторой степени, рассматриваться как аналог параметров функции main(), о которых мы говорили на семинарах 3–4. Возвращаемое функцией значение может интерпретироваться как аналог информации, которую родительский процесс может получить после завершения процесса-ребенка. Для создания новой нити исполнения применяется функция pthread_create() .
Мы не будем рассматривать ее в полном объеме, так как детальное изучение программирования с использованием thread'ов не является целью данного курса.
Важным отличием этой функции от большинства других системных вызовов и функций является то, что в случае неудачного завершения она возвращает не отрицательное, а положительное значение, которое определяет код ошибки, описанный в файле <errno.h>. Значение системной переменной errno при этом не устанавливается. Результатом выполнения этой функции является появление в системе новой нити исполнения, которая будет выполнять функцию, ассоциированную со thread'ом, передав ей специфицированный параметр, параллельно с уже существовавшими нитями исполнения процесса.
Созданный thread может завершить свою деятельность тремя способами:
- С помощью выполнения функции pthread_exit() . Функция никогда не возвращается в вызвавшую ее нить исполнения. Объект, на который указывает параметр этой функции, может быть изучен в другой нити исполнения, например, в породившей завершившийся thread. Этот параметр, следовательно, должен указывать на объект, не являющийся локальным для завершившегося thread'а, например, на статическую переменную;
- С помощью возврата из функции, ассоциированной с нитью исполнения. Объект, на который указывает адрес, возвращаемый функцией, как и в предыдущем случае, может быть изучен в другой нити исполнения, например, в породившей завершившийся thread, и должен указывать на объект, не являющийся локальным для завершившегося thread'а;
- Если в процессе выполняется возврат из функции main() или где-либо в процессе (в любой нити исполнения ) осуществляется вызов функции exit(), это приводит к завершению всех thread'ов процесса.
Одним из вариантов получения адреса, возвращаемого завершившимся thread'ом, с одновременным ожиданием его завершения является использование функции pthread_join() . Нить исполнения, вызвавшая эту функцию, переходит в состояние ожидание до завершения заданного thread'а. Функция позволяет также получить указатель, который вернул завершившийся thread в операционную систему.