Теория игр
Основные концепции
Теория игр — наука молодая, хотя, конечно, и не такая молодая, как теория экономических механизмов. Первые шаги на пути к теории игр были сделаны в XVIII веке, первая опубликованная работа относится к первой половине XIX века — это знаменитая книга Антуана Огюстена Курно [14]. Примечательно, что много важных замечаний, относящихся к теории игр, были сделаны биологами, рассматривавшими теорию естественного отбора и поведения животных; поведение было, разумеется, эгоистическим. Классический труд Рональда Фишера [19] содержит многие методы теории игр, а уже после математического оформления этой теории эстафету принял Джон Майнард Смит [46]. Математически же теорию игр оформил Джон фон Нейман: сначала в статьях 1920-х годов [61], а затем в книге с Оскаром Моргенштерном [62], с которой, наверное, и нужно вести историю теории игр как развитого математического аппарата. Учебники по теории игр мы здесь пересказывать не будем, цель этой книги совершенно другая; мы просто изложим вкратце некоторые вещи из теории игр, без которых нам совсем уж не обойтись. А если читатель заинтересуется теорией игр всерьез, рекомендуем ему учебники [20,23,64,65,79].
Дадим формальное определение игр, которые мы будем рассматривать. Кстати, шахматы или даже го не будут подпадать под это определение. Что и логично: мы тут математикой занимаемся, а не эффективными алгоритмами; а с математической точки зрения (да и с точки зрения теории сложности алгоритмов, асимптотической по своей природе) шахматы или го совершенно неинтересны: на конечной доске с конечной продолжительностью партии и с полной информацией выигрышную (или беспроигрышную, если выигрышной нет) стратегию можно "легко" подсчитать простым перебором вариантов.
Игры, которые будем рассматривать мы, тоже обычно подразумевают конечное (или в теории непрерывное, но в реальности все равно конечное, как множество возможных цен, которые игрок может объявить на аукционе) множество возможных стратегий. Но при этом информация принципиально будет неполной; об этом и вся теория. В нашем понимании стратегической игры все игроки будут действовать одновременно, и выигрыш каждого будет зависеть от того, какие стратегии изберут все остальные.
Определение 1.1.Стратегическая игра — это тройка
где обозначения расшифровываются следующим образом:
- — конечное множество игроков.
- — множество доступных игрокам действий, где — множество действий, доступных игроку . Будем обозначать через действие игрока , а через — вектор действий всех игроков, кроме i1Вообще, обозначения вида в этой книге встречаться будут повсеместно — привыкайте!. Через будем обозначать множество всех векторов действий игроков, через — множество векторов действий всех игроков, кроме . Вектор будем называть профилем действий, или исходом.
- — множество функций выплат .
Нас будут больше интересовать не действия, а стратегии. Стратегия — это то, как агент выбирает свое действие. В началах теории игр это одно и то же, но в теории экономических механизмов мы будем рассматривать стратегии, представляющие собой вероятностные распределения на действиях или функции, которые принимают во внимание еще и какую-либо дополнительную информацию.
Есть и еще одно важное замечание: в течение этой лекции мы предполагаем, что у участников есть предпочтения по поводу исходов игры и эти предпочтения можно выразить при помощи функций . Это далеко не всегда так, и в "Теоремы Эрроу и Гиббарда-Саттертуэйта" мы еще поговорим об интересных эффектах, возникающих, когда предпочтения так выразить нельзя. Но для базовой теории игр придется это предположение все-таки сделать.
Если множество стратегий конечно, то множество исходов игры можно выразить -мерной матрицей, в ячейке которой с координатами стоят исходы . В случае игры с двумя игроками эта конструкция превращается в самую обычную матрицу.
Пример 1.1. Первый пример возьмем совсем уж из детства — рассмотрим классическую игру "камень-ножницы-бумага"2Хотя насчет детства еще можно поспорить: в США вот недавно появилась аж целая ассоциация, посвященная игре в "Rock, Paper, Scissors" под логичным названием USARPS. Призы неплохие — можете попробовать свои силы на сайте http://www.usarps.com/.. Камень побеждает ножницы, ножницы побеждают бумагу, бумага — камень. У игры получается вот какая матрица (где означает победу того игрока, чьи стратегии выписаны слева, а — победу игрока, стратегии которого стоят в первой строке):
Конец примера 1.1.
Пример 1.2. В качестве второго примера рассмотрим классическую игру полковника Блотто [70,79]. Полковник Блотто должен распределить свои силы ( солдат) между несколькими участками поля боя ( участков). Его противник должен сделать то же самое (количество его солдат может отличаться). Выигрывает тот, кто победит на большем количестве участков боя.
Например, пусть участков боя в игре три, причем и Блотто, и его противник располагает тремя солдатами. Тогда множество стратегий у обоих участников сражения состоит из следующих элементов:
(3,0,0), (2,1,0), (2,0,1), (1,2,0), (1,1,1), (1,0,2), (0,3,0), (0,2,1), (0,1,2), (0,0,3).
В результате у этой игры получается вот какая матрица. Здесь стратегии Блотто изображены слева, противника — сверху; означает, что победил Блотто, — что противник, — случилась ничья.
Конец примера 1.2.
Отметим, что в играх из примеров 1.1 и 1.2 прибыль одного участника строго равнялась убытку второго. Такие игры называются играми с нулевой суммой ; формально говоря, в таких играх для любого профиля действий участников верно, что .
В дальнейшем нас будут интересовать не только игры с конечными множествами стратегий, но и игры с непрерывными такими множествами. Возьмем классический пример — конкуренцию по Курно (Cournot competition)3Этот пример действительно восходит к классику экономической теории Антуану Огюстену Курно [14].
Пример 1.3. Рассмотрим рынок некоего продукта, на котором находятся ровно две фирмы: . Стратегия каждого из участников — количество продукта, которое он производит: .
Прибыль каждого участника в результате игры — это его общий доход за вычетом себестоимости:
где — функция, по которой определяется цена, а — цена за единицу для компании . Мы будем предполагать, что . В качестве функции мы рассмотрим
Давайте попробуем проанализировать, как фирмам лучше всего играть в свою игру. Попробуем построить оптимальную стратегию для игрока , если игрок произвел товара (best response function, ). Если , то производить ничего не надо, потому что равновесная цена все равно будет равна нулю. Если же , то оптимальную стратегию придется искать так:
См. рис. рис. 1.1, на котором мы изобразили эти функции. Интуитивно хочется сказать, что равновесие будет достигнуто в точке их пересечения; но формально мы об этом поговорим ниже.
Конец примера 1.3.