Опубликован: 16.12.2009 | Уровень: для всех | Доступ: свободно
Лекция 3:

Основы теории измерений

< Лекция 2 || Лекция 3: 123 || Лекция 4 >

Средние величины в порядковой шкале

Рассмотрим обработку мнений экспертов, измеренных в порядковой шкале. Справедливо следующее утверждение.

Теорема 1. Из всех средних по Коши допустимыми средними в порядковой шкале являются только члены вариационного ряда (порядковые статистики).

Теорема 1 справедлива при условии, что среднее f(X_1, X_2, \dots ,X_n) является непрерывной (по совокупности переменных) и симметрической функцией. Последнее означает, что при перестановке аргументов значение функции f(X_1, X_2, \dots ,X_n) не меняется. Это условие является вполне естественным, ибо среднюю величину мы находим для совокупности (множества), а не для последовательности. Множество не меняется в зависимости от того, в какой последовательности мы перечисляем его элементы.

Согласно теореме 1 в качестве среднего для данных, измеренных в порядковой шкале, можно использовать, в частности, медиану (при нечетном объеме выборки). При четном же объеме следует применять один из двух центральных членов вариационного ряда - как их иногда называют, левую медиану или правую медиану. Моду тоже можно использовать - она всегда является членом вариационного ряда. Но никогда нельзя рассчитывать среднее арифметическое, среднее геометрическое и т.д.

Приведем численный пример, показывающий некорректность использования среднего арифметического f(X_1, X_2) = (X_1 + X_2)/2 в порядковой шкале. Пусть Y_1= 1, Y_2 = 11, Z_1= 6, Z_2= 8. Тогда f(Y_1, Y_2) = 6, что меньше, чем f(Z_1, Z_2) = 7. Пусть строго возрастающее преобразование g таково, что g(1) = 1, g(6) = 6, g(8) = 8, g(11) = 99. Таких преобразований много. Например, можно положить g(x) = x при x, не превосходящих 8, и g(x) = 99(x-8)/3 + 8 для х, больших 8. Тогда f(g(Y_1), g(Y_2)) = 50, что больше, чем f(g(Z_1), g(Z_2)) = 7. Как видим, в результате допустимого, т.е. строго возрастающего преобразования шкалы упорядоченность средних изменилась.

Таким образом, ТИ выносит жесткий приговор среднему арифметическому - использовать его с порядковой шкале нельзя. Однако же те, кто не знает теории измерений, используют его. Всегда ли они ошибаются? Оказывается, можно в какой-то мере реабилитировать среднее арифметическое, если перейти к вероятностной постановке и к тому удовлетвориться результатами для больших объемов выборок. В монографии [2] получено также следующее утверждение.

Теорема 2. Пусть Y_1, Y_2, \dots ,Y_m - независимые одинаково распределенные случайные величины с функцией распределения F(x), а Z_1, Z_2, \dots ,Z_n - независимые одинаково распределенные случайные величины с функцией распределения H(x), причем выборки Y_1, Y_2, \dots ,Y_m и Z_1, Z_2, \dots ,Z_n независимы между собой и МY_1  > MZ_1. Для того, чтобы вероятность события \{\omega: \frac{g(Y_1)+g(Y_2)+ \dots +g(Y_m)}{m} > \farc{g(Z_1)+g(Z)_2+ \dots +G(Z_n)}{n} стремилась к 1 при min (m,n) \to \infty для любой строго возрастающей непрерывной функции g, удовлетворяющей условию \lim_{|x| \to \infty}|\frac{g(x)}{x}| < \infty необходимо и достаточно, чтобы при всех x выполнялось неравенство F(x) \le H(x), причем существовало число x_0, для которого F(x_0) < H(x_0) .

Примечание. Условие с верхним пределом носит чисто внутриматематический характер. Фактически функция g - произвольное допустимое преобразование в порядковой шкале.

Согласно теореме 2 средним арифметическим можно пользоваться и в порядковой шкале, если сравниваются выборки из двух распределений, удовлетворяющих приведенному в теореме неравенству. Проще говоря, одна из функций распределения должна всегда лежать над другой. Функции распределения не могут пересекаться, им разрешается только касаться друг друга. Это условие выполнено, например, если функции распределения отличаются только сдвигом:

F(x) = H(x+b)

При некотором b. Последнее условие выполняется, если два значения некоторой величины измеряются с помощью одного и того же средства измерения, у которого распределение погрешностей не меняется при переходе от измерения одного значения рассматриваемой величины к измерению другого.

Средние по Колмогорову

Обобщением нескольких из перечисленных выше средних является среднее по Колмогорову. Для чисел X_1, X_2, \dots ,X_n среднее по Колмогорову вычисляется по формуле

G\{(F(X_1)+F(X_2)+ \dots F(X_n))/n\},

где F - строго монотонная функция (т.е. строго возрастающая или строго убывающая), G - функция, обратная к F. Среди средних по Колмогорову - много хорошо известных персонажей. Так, если F(x) = x, то среднее по Колмогорову - это среднее арифметическое, если F(x) = \ln x, то среднее геометрическое, если F(x) = 1/x, то среднее гармоническое, если F(x) =  x^2, то среднее квадратическое, и т.д. Среднее по Колмогорову - частный случай среднего по Коши. С другой стороны, такие популярные средние, как медиана и мода, нельзя представить в виде средних по Колмогорову. В монографии [2] доказаны следующие утверждения.

Теорема 3. При справедливости некоторых внутриматематических условий регулярности в шкале интервалов из всех средних по Колмогорову допустимым является только среднее арифметическое.

Таким образом, среднее геометрическое или среднее квадратическое температур (в шкале Цельсия) или расстояний не имеют смысла. В качестве среднего надо применять среднее арифметическое. А также можно использовать медиану или моду.

Теорема 4. При справедливости некоторых внутриматематических условий регулярности в шкале отношений из всех средних по Колмогорову допустимыми являются только степенные средние с F(x) =  x^с , c \ne 0 и среднее геометрическое.

Замечание. Среднее геометрическое является пределом степенных средних при c \to 0

Есть ли средние по Колмогорову, которыми нельзя пользоваться в шкале отношений? Конечно, есть. Например, с F(x) =  e^x.

Аналогично средним величинам могут быть изучены и другие статистические характеристики - показатели разброса, связи, расстояния и др. (см., например, [2]). Нетрудно показать, например, что коэффициент корреляции не меняется при любом допустимом преобразовании в шкале интервалов, как и отношение дисперсий, дисперсия не меняется в шкале разностей, коэффициент вариации - в шкале отношений, и т.д.

Приведенные выше результаты о средних величинах широко применяются, причем не только в экономике, менеджменте, теории экспертных оценок или социологии, но и в инженерном деле, например, для анализа методов агрегирования датчиков в АСУ ТП доменных печей. Велико прикладное значение ТИ в задачах стандартизации и управления качеством, в частности, в квалиметрии. Здесь есть и интересные теоретические результаты. Так, например, любое изменение коэффициентов весомости единичных показателей качества продукции приводит к изменению упорядочения изделий по средневзвешенному показателю (эта теорема доказана проф. В.В. Подиновским).

< Лекция 2 || Лекция 3: 123 || Лекция 4 >
Михаил Агапитов
Михаил Агапитов

Не могу найти  требования по оформлению выпускной контрольной работы по курсу профессиональной переподготовки "Менеджмент предприятия"

Подобед Александр
Подобед Александр

Я нажал кнопку "начать курс" и почти его уже закончил, но для получения диплома на бумаге, нужно его же оплатить? Как оплатить?