Классы
5.5.4 Объекты класса как члены
Рассмотрим пример:
class classdef { table members; int no_of_members; // ... classdef(int size); ~classdef(); };
Цель этого определения, очевидно, в том, чтобы classdef содержал член, являющийся таблицей размером size, но есть сложность: надо обеспечить вызов конструктора table::table() с параметром size. Это можно сделать, например, так:
classdef::classdef(int size) :members(size) { no_of_members = size; // ... }
Параметр для конструктора члена (т.е. для table::table() ) указывается в определении (но не в описании) конструктора класса, содержащего член (т.е. в определении classdef::classdef() ). Конструктор для члена будет вызываться до выполнения тела того конструктора, который задает для него список параметров.
Аналогично можно задать параметры для конструкторов других членов (если есть еще другие члены):
class classdef { table members; table friends; int no_of_members; // ... classdef(int size); ~classdef(); };
Списки параметров для членов отделяются друг от друга запятыми (а не двоеточиями), а список инициализаторов для членов можно задавать в произвольном порядке:
classdef::classdef(int size) : friends(size), members(size), no_of_members(size) { // ... }
Конструкторы вызываются в том порядке, в котором они заданы в описании класса.
Подобные описания конструкторов существенны для типов, инициализация и присваивание которых отличны друг от друга, иными словами, для объектов, являющихся членами класса с конструктором, для постоянных членов или для членов типа ссылки. Однако, как показывает член no_of_members из приведенного примера, такие описания конструкторов можно использовать для членов любого типа.
Если конструктору члена не требуется параметров, то и не нужно задавать никаких списков параметров. Так, поскольку конструктор table::table() был определен со стандартным значением параметра, равным 15, достаточно такого определения:
classdef::classdef(int size) : members(size), no_of_members(size) { // ... }
Тогда размер таблицы friends будет равен 15.
Если уничтожается объект класса, который сам содержит объекты класса (например, classdef ), то вначале выполняется тело деструктора объемлющего класса, а затем деструкторы членов в порядке, обратном их описанию.
Рассмотрим вместо вхождения объектов класса в качестве членов традиционное альтернативное ему решение: иметь в классе указатели на члены и инициализировать члены в конструкторе:
class classdef { table* members; table* friends; int no_of_members; // ... }; classdef::classdef(int size) { members = new table(size); friends = new table; // используется стандартный // размер table no_of_members = size; // ... }
Поскольку таблицы создавались с помощью операции new, они должны уничтожаться операцией delete:
classdef::~classdef() { // ... delete members; delete friends; }
Такие отдельно создаваемые объекты могут оказаться полезными, но учтите, что members и friends указывают на независимые от них объекты, каждый из которых надо явно размещать и удалять. Кроме того, указатель и объект в свободной памяти суммарно занимают больше места, чем объект-член.
5.5.5 Массивы объектов класса
Чтобы можно было описать массив объектов класса с конструктором, этот класс должен иметь стандартный конструктор, т.е. конструктор, вызываемый без параметров. Например, в соответствии с определением
table tbl[10];
будет создан массив из 10 таблиц, каждая из которых инициализируется вызовом table::table(15), поскольку вызов table::table() будет происходить с фактическим параметром 15.
В описании массива объектов не предусмотрено возможности указать параметры для конструктора. Если члены массива обязательно надо инициализировать разными значениями, то начинаются трюки с глобальными или статическими членами.
Когда уничтожается массив, деструктор должен вызываться для каждого элемента массива. Для массивов, которые размещаются не с помощью new, это делается неявно. Однако для размещенных в свободной памяти массивов неявно вызывать деструктор нельзя, поскольку транслятор не отличит указатель на отдельный объект массива от указателя на начало массива, например:
void f() { table* t1 = new table; table* t2 = new table[10]; delete t1; // удаляется одна таблица delete t2; // неприятность: // на самом деле удаляется 10 таблиц }
В данном случае программист должен указать, что t2 - указатель на массив:
void g(int sz) { table* t1 = new table; table* t2 = new table[sz]; delete t1; delete[] t2; }
Функция размещения хранит число элементов для каждого размещаемого массива. Требование использовать для удаления массивов только операцию delete[] освобождает функцию размещения от обязанности хранить счетчики числа элементов для каждого массива. Исполнение такой обязанности в реализациях С++ вызывало бы существенные потери времени и памяти и нарушило совместимость с С.
5.5.6 Небольшие объекты
Если в вашей программе много небольших объектов, размещаемых в свободной памяти, то может оказаться, что много времени тратится на размещение и удаление таких объектов. Для выхода из этой ситуации можно определить более оптимальный распределитель памяти общего назначения, а можно передать обязанность распределения свободной памяти создателю класса, который должен будет определить соответствующие функции размещения и удаления.
Вернемся к классу name, который использовался в примерах с table. Он мог бы определяться так:
struct name { char* string; name* next; double value; name(char*, double, name*); ~name(); void* operator new(size_t); void operator delete(void*, size_t); private: enum { NALL = 128 }; static name* nfree; };
Функции name::operator new() и name::operator delete() будут использоваться (неявно) вместо глобальных функций operator new() и operator delete(). Программист может для конкретного типа написать более эффективные по времени и памяти функции размещения и удаления, чем универсальные функции operator new() и operator delete(). Можно, например, разместить заранее "куски" памяти, достаточной для объектов типа name, и связать их в список; тогда операции размещения и удаления сводятся к простым операциям со списком. Переменная nfree используется как начало списка неиспользованных кусков памяти:
void* name::operator new(size_t) { register name* p = nfree; // сначала выделить if (p) nfree = p->next; else { // выделить и связать в список name* q = (name*) new char[NALL*sizeof(name) ]; for (p=nfree=&q[NALL-1]; q<p; p--) p->next = p-1; (p+1)->next = 0; } return p; }
Распределитель памяти, вызываемый new, хранит вместе с объектом его размер, чтобы операция delete выполнялась правильно. Этого дополнительного расхода памяти можно легко избежать, если использовать распределитель, рассчитанный на конкретный тип. Так, на машине автора функция name::operator new() для хранения объекта name использует 16 байтов, тогда как стандартная глобальная функция operator new() использует 20 байтов.
Отметим, что в самой функции name::operator new() память нельзя выделять таким простым способом:
name* q= new name[NALL];
Это вызовет бесконечную рекурсию, т.к. new будет вызывать name::name().
Освобождение памяти обычно тривиально:
void name::operator delete(void* p, size_t) { ((name*)p)->next = nfree; nfree = (name*) p; }
Приведение параметра типа void* к типу name* необходимо, поскольку функция освобождения вызывается после уничтожения объекта, так что больше нет реального объекта типа name, а есть только кусок памяти размером sizeof(name). Параметры типа size_t в приведенных функциях name::operator new() и name::operator delete() не использовались. Отметим, что наши функции размещения и удаления используются только для объектов типа name, но не для массивов names.