Добрый день! Я ранее заканчивал этот курс бесплатно. Мне пришло письмо что я могу по этому курсу получить удостоверение о повышении квалификации. Каким образом это можно сделать не совсем понятны шаги кроме как вновь записаться на этот курс. С уважением Жолондиевский Эрнесто Робертович. |
Модели знаний
Одной из важных форм (методов) формализации знаний является их представление классом ( классификация ).
Классификация - выделение некоторого критерия (некоторых критериев) распределения и группировка систем или процессов таким образом, что в одну группу попадают лишь те системы (процессы), которые удовлетворяют этому критерию (значению критерия). Классификация - это метод научной систематики, особенно важный на начальном этапе формирования базовых знаний научного направления. Классификация, установление эквивалентности объектов, систем позволяет решать такие важные задачи информатики как фиксация знаний, поиск по образцу, сравнение и др.
Пример. Такими системами являются классификационная система К. Линнея в ботанике, систематика живых организмов, таблица элементов Д. Менделеева, систематика экономических систем, механизмов, "табель о рангах", введенная Петром Первым в 1722 г. Эта табель подразделяла чины на 14 рангов. Каждому чину соответствовала определенная должность. Первые 6 рангов статской и придворной служб и первый обер-офицерский чин в армии давали право на получение потомственного дворянства, что способствовало формированию дворянской бюрократии. Таким образом, "табель о рангах" выполняла социально-экономическую классификацию определенной (определяющей) части общества, социально-экономическое стимулирующее упорядочивание.
Указанные выше классификационные системы - иерархические структуры (модели) представления знаний. Отдельные понятия, факты, знания, связаны между собой отношениями индуктивного (от частного к общему), дедуктивного (от общего к частному) или индуктивно-дедуктивного вывода и формализуются соответствующими формальными структурами: древовидными, морфологическими, реляционными и др.
Пример. Рассмотрим систему "Фирма". Опишем всех сотрудников фирмы в лексикографически упорядоченном списке с именем "Сотрудники", указывая табельный номер, ФИО, год рождения, образование, специальность, разряд, стаж работы. Этот список дает нам знание о коллективе, его возрастных и профессиональных качествах и др. Составим другой список - "Заработная плата", где укажем для каждого сотрудника условия оплаты, величину их заработка (стоимости единицы времени их работы). Этот список дает нам знания о системе оплаты фирмы, ее финансового состояния и др. Оба списка содержат необходимый объем знаний о трудовом коллективе, если цель исследования этой системы - начисление заработной платы. Здесь мы наблюдаем и древовидные, и морфологические, и реляционные модели представления знаний.
Для более строгой формализации (сложных и динамических) знаний в последнее время используют такой перспективный инструментарий, как категории и функторы. Впрочем, математическая сложность такого аппарата не дает применять его на первоначальных этапах формализации знаний и он чаще используется лишь тогда, когда знания получили достаточно полную математическую форму описания.
Появление и развитие объектно-ориентированных технологий и объектно-ориентированного проектирования, использующих близкие по духу идеи, тем не менее, актуализируют аппарат категорий и функторов, поэтому введем основные начальные понятия.
Категория K=<S,M> - это совокупность S элементов (компоненты, характеристики, параметры, свойства и другие параметры исследуемой системы), называемых объектами категории, и совокупность преобразований, морфизмов M - специального типа преобразований, которые позволяют описывать (определять), например, эквивалентность, инвариантность и другие свойства. Объекты и морфизмы связаны между собой так, что:
- каждой упорядоченной паре объектов А,
сопоставлено множество M(A, B) морфизмов из M ;
- каждый морфизм
принадлежит только одному из множеств M(A,B) ;
- в классе морфизмов М введен закон композиции морфизмов: произведение aob морфизма
на морфизм
определено и принадлежит M(A,B) тогда и только тогда, когда объект
совпадает с объектом
, причем композиция морфизмов ассоциативна: (ao b)o c=ao (bo c) ;
- в каждом множестве М(A,A) содержится единичный или тождественный морфизм
,
,
,
, IAob=b.
Категории, их использование для представления знаний адекватны мыслительным процедурам человека, учитывающим опыт, интуицию, понимание мира в терминах категорий, которым мы затем приписываем реальные оболочки, конкретные структуры. Объекты категории могут быть связаны между собой, влиять друг на друга, даже если у них нет общего (формального) сходства, а свойства категорий отражают сущность способностей человека, его поведения в окружении.
Функтор - обобщение понятия категории. Для введения преобразования между категориями используем понятие функтора. Функтор - аналог семантической операции, т.е. преобразования информации, приводящего к появлению некоторого смыслового (семантического) содержания.
Функтор определяется парой отображений, которые сохраняют композицию морфизмов и тождественные отображения (сохраняют смысл информации при преобразованиях): одно отображение преобразует объекты S (грубо говоря, - информацию), а другое - преобразует морфизмы M (грубо говоря, - семантический смысл).
Самый плохо формализуемый в информатике процесс - это процесс образования семантического смысла. Строгая математическая основа аппарата категорий и функторов позволяет исследовать семантический смысл математически корректно (путем построения семантических сетей, анализа фреймов, продукционных правил и др.), что является необходимым условием формализации знаний, разработки баз знаний и систем интеллектуальной поддержки принятия решений.
Категорийно-функторный подход к проблеме формализации знаний позволяет формализовать многие интуитивно используемые понятия.
Пример. Формализуем, например, понятия "формула", "теория". Формула Fi - запись вида Ri(k)(x1,:,xk), которую следует читать так: k переменных x1,:, xk удовлетворяют отношению Ri(k). В каждой i-ой формуле Fi может быть различное число свободных (не связанных) переменных. Понятие "(формальная) теория" можно определить как кортеж Т=<S,F>, где S - сигнатура (множество определенных, разрешенных операции), а F - множество формул без свободных переменных (аксиом теории). Если дополнительно определено и множество правил вывода P, то T=<S,F,P>. Отсюда видно, что формальная теория базируется на конкретной предметной области, определяемой сигнатурой.
Для компьютерного представления и обработки знаний и данных о предметной области (об объектах, процессах, явлениях, их структуре и взаимосвязях), они должны быть формализованы и представлены в определенном формализованном виде.
При традиционном способе реализации математической модели, знаний, заложенных в ней, строится моделирующий алгоритм (моделирующая программа), т.е. знания процедурно зависят от метода (алгоритма) обработки. В интеллектуальных системах (в системах искусственного интеллекта, в частности) знания о предметной области представлены в виде декларативной (описательной) модели формирования базы знаний и соответствующих правил вывода из нее и явно не зависят от процедуры их обработки. Для этого используются специальные модели представления знаний, например, продукционные, фреймовые, сетевые и логические. При обработке модели знаний используются процедуры логического вывода, называемые также механизмом или машиной вывода. Обычно в базе знаний зафиксированы общие закономерности, правила, описывающие проблемную среду и предметную область.