Опубликован: 27.07.2006 | Доступ: свободный | Студентов: 6219 / 1554 | Оценка: 4.37 / 4.06 | Длительность: 13:49:00
ISBN: 978-5-9556-0049-9
Специальности: Программист
Лекция 8:

Нейронные сети Хопфилда и Хэмминга

< Лекция 7 || Лекция 8: 12345 || Лекция 9 >
Аннотация: В лекции рассматривается архитектура сети Хопфилда и ее модификация - сеть Хэмминга, затрагиваются вопросы устойчивости сети Хопфилда. В заключении лекции рассматриваются понятие ассоциативности памяти и задача распознавания образов.

Сети, рассмотренные на предыдущих лекциях, не имели обратных связей, т. е. связей, идущих от выходов сетей к их входам. Отсутствие обратной связи гарантирует безусловную устойчивость сетей. (Они не могут войти в режим, когда выход беспрерывно блуждает от состояния к состоянию и не пригоден для использования.) Но это весьма желательное качество достигается не бесплатно: сети без обратных связей обладают более ограниченными возможностями по сравнению с сетями с обратными связями. Так как сети с обратными связями имеют пути, передающие сигналы от выходов к входам, то отклик таких сетей является динамическим, т. е. после приложения нового входа вычисляется выход и, передаваясь по сети обратной связи, модифицирует вход. Затем выход повторно вычисляется, и процесс повторяется снова и снова. Для устойчивой сети последовательные итерации приводят к все меньшим изменениям выхода, пока в конце концов выход не становится постоянным. Для многих сетей процесс никогда не заканчивается, такие сети называют неустойчивыми. Неустойчивые сети обладают интересными свойствами и изучались в качестве примера хаотических систем. Однако такой большой предмет, как хаос, находится за пределами этого курса. Вместо этого мы сконцентрируем свое внимание на устойчивых сетях, т. е. на тех, которые в завершении процесса дают постоянный выход. Проблема устойчивости ставила в тупик первых исследователей. Никто не мог предсказать, какие из сетей будут устойчивыми, а какие будут находиться в постоянном изменении. Более того, проблема представлялась столь трудной, что многие исследователи были настроены пессимистически относительно возможности ее решения. К счастью, была получена теорема, описавшая подмножество сетей с обратными связями, выходы которых в конце концов достигают устойчивого состояния. Это замечательное достижение открыло дорогу дальнейшим исследованиям, и сегодня многие ученые занимаются исследованием сложного поведения и возможностей этих систем. Дж. Хопфилд сделал важный вклад как в теорию, так и в применение систем с обратными связями. Поэтому некоторые из конфигураций известны как сети Хопфилда.

Конфигурации сетей с обратными связями

Рассмотренный нами ранее персептрон относится к классу сетей с направленным потоком распространения информации и не содержит обратных связей. На этапе функционирования каждый нейрон выполняет свою функцию — передачу возбуждения другим нейронам — ровно один раз. Динамика состояний нейронов является неитерационной.

Несколько более сложной является динамика в сети Кохонена. Конкурентное соревнование нейронов достигается путем итераций, в процессе которых информация многократно передается между нейронами.

В общем случае может быть рассмотрена нейронная сеть, содержащая произвольные обратные связи, по которым переданное возбуждение возвращается к данному нейрону, и он повторно выполняет свою функцию. Наблюдения за биологическими локальными нейросетями указывают на наличие множественных обратных связей. Нейродинамика в таких системах становится итерационной. Это свойство существенно расширяет множество типов нейросетевых архитектур, но одновременно приводит к появлению новых проблем.

Неитерационная динамика состояний нейронов является, очевидно, всегда устойчивой. Обратные связи могут приводить к возникновению неустойчивостей, подобных тем, которые возникают в усилительных радиотехнических системах при положительной обратной связи. В нейронных сетях неустойчивость проявляется в блуждающей смене состояний нейронов, не приводящей к возникновению стационарных состояний. В общем случае, ответ на вопрос об устойчивости динамики произвольной системы с обратными связями крайне сложен и до настоящего времени является открытым.

Остановимся на важном частном случае нейросетевой архитектуры, для которой свойства устойчивости подробно исследованы. На рис. 8.1 показана сеть с обратными связями, состоящая из двух слоев. Способ представления несколько отличается от использованного в работе Хопфилда и других сходных, но эквивалентен им с функциональной точки зрения, а также хорошо связан с сетями, рассмотренными на предыдущих лекциях. Нулевой слой, как и на предыдущих рисунках, не выполняет вычислительной функции, а лишь распределяет выходы сети обратно на входы. Каждый нейрон первого слоя вычисляет взвешенную сумму своих входов, давая сигнал NET, который затем с помощью нелинейной функции F преобразуется в сигнал OUT. Эти операции сходны с нейронами других сетей.


Рис. 8.1.
< Лекция 7 || Лекция 8: 12345 || Лекция 9 >