Подскажите, пожалуйста, планируете ли вы возобновление программ высшего образования? Если да, есть ли какие-то примерные сроки? Спасибо! |
Типовые математические модели
Во многих случаях модель может быть представлена в виде конструкций из математических символов. В первой теме такие модели мы назвали аналитическими, чтобы отделить от других математических моделей - имитационных. С развитием последних область применения аналитических моделей сократилась. Однако актуальность такого моделирования сохраняется для систем, особенно тех, в которых протекают так называемые процессы без последействия. Процессы без последействия находят место при функционировании многих технических систем. Впервые один из типов такого процесса ввел в научный обиход и исследовал отечественный математик А. А. Марков, поэтому процессы без последействия и системы, в которых они протекают, названы марковскими, а один из типов такого процесса назван цепью Маркова. В настоящее время теория марковских процессов разработана широко и детально, в основном, благодаря отечественным ученым А. Я. Хинчину, Б. В. Гнеденко, А. Н. Колмогорову и другим. Популярность этой теории состоит еще и в том, что она может быть применена и к системам с последействием, которые с помощью некоторых ухищрений можно трактовать как марковские.
В этой теме рассматриваются элементы теории марковских процессов и ряд аналитических моделей, в основе которых лежит допущение о марковости протекающих в моделируемых объектах процессов. К таковым, в первую очередь, относится широкий класс самых разнообразных объектов, имеющих общее название систем массового обслуживания (СМО). Для ряда стандартных структур СМО аналитические модели, связывающие показатели эффективности СМО с характеристиками элементов СМО, приведены в соответствующих справочниках. Здесь же приводятся классификация СМО и приемы построения графов состояний СМО, позволяющих строить или применять готовые аналитические модели.
Заметим, что для ряда современных сложных СМО аналитическое моделирование неприемлемо в силу недостаточности адекватных математических средств. В этих случаях следует применять имитационное моделирование, которое детально рассматривается в следующих темах.
В многоэлементных системах с большим числом состояний аналитическое моделирование на основе теории марковских процессов становится весьма громоздким. В этом случае используется так называемый метод динамики средних, который в основе имеет также марковость процесса. Этот метод существенно упрощает аналитическое моделирование для случаев определения средних характеристик состояний моделируемой системы. В этой теме дано обоснование метода и приводятся примеры его применения.
2.1. Дискретные марковские процессы
Наиболее полное исследование процесса функционирования систем получается, если известны явные математические зависимости, связывающие искомые показатели с начальными условиями, параметрами и переменными исследуемой системы. Для многих современных систем, являющихся объектами моделирования, такие математические зависимости отсутствуют или малопригодны, и следует применять другое моделирование, как правило, имитационное.
Однако есть ряд конкретных математических схем, проверенных практикой и доказавших эффективность моделированием. Целью изучения настоящей темы является освоение таких математических моделей.
В инженерной практике часто возникает задача моделирования процессов случайной смены состояний в исследуемом объекте. В рамках нашей профессии нас интересуют дискретные состояния. Например, техническое состояние объекта может характеризоваться дискретными состояниями: исправен - неисправен, загружен - находится в простое и т. п. Численности боевых средств противоборствующих сторон изменяются дискретно, очереди объектов, ожидающих обслуживания, и многое другое.
Вид очередного состояния может определяться случайным образом, смена состояний может происходить в случайные или не случайные моменты времени.
Большой класс случайных процессов составляют процессы без последействия, которые в математике называют марковскими процессами в честь Андрея Андреевича Маркова - старшего (1856-1922), выдающегося русского математика, разработавшего основы теории таких процессов.
Сущность процесса без последействия понятна из определения.
Случайный процесс называется марковским, если вероятность перехода системы в новое состояние зависит только от состояния системы в настоящий момент и не зависит от того, когда и каким образом система перешла в это состояние.
Практически любой случайный процесс является марковским или может быть сведен к марковскому. В последнем случае достаточно в понятие состояния включить всю предысторию смен состояний системы.
А. А. Марков имеет дополнение к фамилии "старший" потому, что его сын - тоже Андрей Андреевич Марков - выдающийся математик, специалист в области теории алгоритмов и др.
А. А. Марков - старший известен также как давший вероятностное обоснование метода наименьших квадратов, приведший одно из доказательств предельной теоремы теории вероятностей и многое другое.
Дальнейшее развитие теория марковских процессов получила в работах выдающегося отечественного математика Андрея Николаевича Колмогорова.
Марковские процессы делятся на два класса:
- дискретные марковские процессы (марковские цепи);
- непрерывные марковские процессы.
Дискретной марковской цепью называется случайный процесс, при котором смена дискретных состояний происходит в определенные моменты времени.
Непрерывным марковским процессом называется случайный процесс, при котором смена дискретных состояний происходит в случайные моменты времени.
Итак, моделирование на основе дискретных марковских процессов.
Рассмотрим ситуацию, когда моделируемый процесс обладает следующими особенностями.
Система имеет
возможных состояний:
,
, ...,
. Вообще говоря, число состояний может быть бесконечным. Однако модель, как правило, строится для конечного числа состояний.
Смена состояний происходит, будем считать, мгновенно и в строго определенные моменты времени В дальнейшем будем называть временные точки
шагами.
Известны вероятности перехода системы за один шаг из состояния
в состояние
.
Цель моделирования: определить вероятности состояний системы после -го шага.
Обозначим эти вероятности (не путать с вероятностями
).
Если в системе отсутствует последействие, то есть вероятности не зависят от предыстории нахождения системы в состоянии
, а определяются только этим состоянием, то описанная ситуация соответствует модели дискретной марковской цепи.
Марковская цепь называется однородной, если переходные вероятности от времени не зависят, то есть от шага к шагу не меняются. В противном случае, то есть если переходные вероятности
зависят от времени, марковская цепь называется неоднородной.
Значения обычно сводятся в матрицу переходных вероятностей:

Значения могут также указываться на графе состояний системы. На рис. 2.1 показан размеченный граф для четырех состояний системы. Обычно вероятности переходов "в себя" -
,
и т. д. на графе состояний можно не проставлять, так как их значения дополняют до 1 сумму переходных вероятностей, указанных на ребрах (стрелках), выходящих из данного состояния.
Не указываются также нулевые вероятности переходов. Например, на рис. 2.1 это вероятности ,
и др.
Математической моделью нахождения вероятностей состояний однородной марковской цепи является рекуррентная зависимость

где - вероятность
-го состояния системы после
-го шага,
;
- вероятность
-го состояния системы после
-го шага,
;
- число состояний системы;
- переходные вероятности.
Для неоднородной марковской цепи вероятности состояний системы находятся по формуле:

где - значения переходных вероятностей для
-го шага.
Пример 2.1. По группе из четырех объектов производится три последовательных выстрела. Найти вероятности состояний группы объектов после третьего выстрела.
Матрица переходных вероятностей имеет вид:

Размеченный граф состояний приведен на рис. 2.2.
Прежде чем приступить к вычислениям, необходимо ответить на следующие вопросы.
- Является ли рассматриваемый процесс поражения целей марковским? Да, так как степень поражения объекта (смена его состояния) не зависит от того - когда и каким образом объект был приведен в настоящее состояние, а зависит только от его текущего состояния.
- Подходит ли рассматриваемая задача под схему марковской цепи? Да, так как время представляет собой дискретные отрезки - время между выстрелами (шаги).
- Процесс однородный или неоднородный? Есть основания полагать, что процесс однородный, так как переходные вероятности не зависят от времени. Кроме этого, мы полагаем, что объекты - неподвижные и во времени обстрела менять свое положение не могут (что привело бы к изменениям
после каждого выстрела).
- И, наконец, надо правильно определить начальное состояние системы, так как от этого могут существенно зависеть результаты моделирования. В нашем случае вполне естественно считать начальным состояние
- все объекты целы.
Следовательно, есть все основания для применения ранее введенного рекуррентного выражения (2.1).
Решение. Так как до первого выстрела все объекты целы, то .
После первого выстрела все значения вероятностей соответствуют первой строке матрицы переходных вероятностей. Рассчитаем вероятности остальных состояний.

Сформулируем методику моделирования по схеме дискретных марковских процессов (марковских цепей).
-
Зафиксировать исследуемое свойство системы.
Определение свойства зависит от цели исследования. Например, если исследуется объект с целью получения характеристик надежности, то в качестве свойства следует выбрать исправность. Если исследуется загрузка системы, то - занятость. Если, как в примере 2.1, состояния объектов, то - поражен или непоражен.
- Определить конечное число возможных состояний системы и убедиться в правомерности моделирования по схеме дискретных марковских процессов.
- Составить и разметить граф состояний.
- Определить начальное состояние.
- По рекуррентной зависимости (2.1) определить искомые вероятности.
В рамках изложенной методики моделирования исчерпывающей характеристикой поведения системы является совокупность вероятностей .
При неоднородном марковском процессе переходная вероятность представляет собой условную вероятность перехода
, зависящую от
- очередного временного шага. В этом случае должны быть указаны более одной матрицы значений
(для некоторых шагов матрицы могут быть одинаковыми).
Например, при нанесении ударов по объектам, которые могут перемещаться (танковая группировка, корабли и т. п.), последние будут принимать меры по рассредоточению средств или другому защитному маневру, вплоть до активного противодействия атакующей стороне. Очевидно, все эти меры приведут к уменьшению поражающих возможностей стороны, наносящей удары, т. е. к соответствующему изменению переходных вероятностей. Процесс становится неоднородным.