Опубликован: 02.07.2009 | Доступ: свободный | Студентов: 4619 / 1116 | Оценка: 4.31 / 3.97 | Длительность: 18:18:00
ISBN: 978-5-9963-0104-1
Лекция 8:

Процедуры сигнализации UTRAN

7.5. Физический уровень UMTS

Физический уровень UMTS/WCDMA полностью отличается от решений, применяемых в GSM. Он использует технологию расширения спектра передачи в виде, применяемом в CDMA, а не технологию TDMA, которая применяется в GSM. Кроме того, UMTS работает в другом диапазоне частот.

7.5.1. Частоты

В настоящее время имеется шесть полос частот, определенных для использования в UMTS/CDMA, хотя и другие не запрещены. Однако все диапазоны, применяемые в настоящее время, выбираются около 2 ГГц. Международная конференция администраций по радиочастотам (WARC — World Administrative Radio Conference) еще в 1992 году рекомендовала администрациям, предполагающим внедрить IMT-2000, не занимать диапазоны 1885–2005 и 2110–2200 МГц. Целью такой рекомендации было облегчить всемирный роуминг для пользователей UMTS.

В пределах этих полос были зарезервированы участки для различных приложений:

  • 1920–1980 и 2110–2170 MГц — для дуплексной передачи с частотным разделением (FDD — Frequency Division Duplex) и W-CDMA и создания парных каналов связи от узла B к UE (downlink) и от UE к узлу B (uplink), с шириной каждого канала 5 МГц, и расстоянием между каналами 200 кГц. Операторам необходимы 3–4 диапазона (2x15 МГц или 2x20 МГц) для построения быстродействующей сети большой емкости;
  • 2010–2025 МГц — для дуплексной передачи с с временным разделением (TDD, TD/CDMA) — непарные каналы, с шириной каждого канала 5 МГц и расстоянием между каналами 200 кГц. Передача и прием не отделены по частоте;
  • 1980–2010 — для спутникового канала связи от абонента к станции и от UE к узлу B (uplink), а также 2170–2200 МГц — от станции к абоненту и от узла B к UE (downlink).

Как уже упоминалось, в России для систем 3G распределяются диапазоны 1935–1950, 2015–2040, 2225–2240. UMTS использует транспортный механизм WCDMA для транспортировки информации. Каждый канал занимает диапазон 5 МГц. Для передачи информации от узла B к UE и в обратном направлении применяются различные способы модуляции. Для передачи от узла B к UE применяется квадратурно-фазовая манипуляция (QPSKQuadrate Phase Shift Keying). Для передачи в обратном направлении используются два отдельных канала, так, чтобы прямые и обратные линии передачи речи не влияли друг на друга (эта проблема была обнаружена в GSM). Для образования двойного канала (DQPSK — Dual Quadrate Phase Shift Keying) применяются специальные модуляторы-демодуляторы. Он использует для передачи по каждому из каналов различные фазы модуляции (I и Q) или квадратурный выход модулятора.

7.5.2. Расширение

Передаваемые данные кодируются, используя расширяющий код, конкретный для каждого пользователя. После такого кодирования информацию может расшифровать только желательный получатель. Все другие сигналы появляются и отделяются как шум. Это позволяет нескольким пользователям одновременно пользоваться одним физическим радиочастотным каналом.

Коды исходного сигнала CDMA умножаются на расширяющую кодовую последовательность (spreading code), что увеличивает ширину полосы, занимаемую сигналом. Для WCDMA каждый физический канал расширяется уникальной и различной расширяющейся последовательностью. Полный коэффициент расширения (отношение ширины полосы частот в радиоканале к скорости передаваемой информации) изменяется, чтобы в полной степени использовать полосу пропускания. В той мере как будет изменяться требуемая скорость от приложения к приложению, так соответственно будет изменяться коэффициент расширения.

При передаче информации от узла B к UE скорость передачи равна 3,84 Мбит/с. При модуляции QPSK возможна передача двух бит на каждый символ (чип). Таким образом, скорость в канале будет равна 7,68 Мбит/c. Если фактическая скорость передачи данных равна 15 бит/с, то коэффициент расширения — 512. Если первоначальная скорость будет выше, чем скорость последовательности расширения, то система должна будет регулировать первоначальную скорость. Следует помнить, что изменение скорости чипов изменяет полностью всю эффективность работы системы. Высокий коэффициент расширения улучшает характеристики и дает возможность осуществлять простую корреляцию, а следовательно, позволяет уменьшить мощность передачи при прежнем уровне ошибок.

Коды, которые требуются для расширения сигнала, должны быть ортогональны, чтобы множество пользователей и каналов работали без взаимных помех и влияний, и должны работать синхронно. Поскольку невозможно при переменном коэффициенте расширения сохранить точный синхронизм, используется второй набор кодов скремблирования, которые гарантируют, что взаимное влияние не отразится на работе системы. Код скремблирования — это код, применяющий для шифрования псевдослучайные числа. Таким образом, имеется две ступени расширения: первая ступень — на основе ортогональных кодов с переменным коэффициентом расширения кодов (OVSF — Orthogonal Variable Spreading Factor codes), и вторая — на основе псевдослучайных чисел. Эти коды используются, чтобы обеспечить два отличающихся уровня отделения сигнала.

Ортогональные коды с переменным коэффициентом расширения — это ансамбль кодов с переменной длиной; он формируется на основе кодового дерева, каждый уровень которого удваивает число возможных комбинаций и длину кода.

Расширяющие кодовые последовательности OVSF используются, чтобы идентифицировать пользовательские услуги в соединительных и пользовательских каналах в направлении от узла B к UE, тогда как псевдокоды (PN) применяются, чтобы идентифицировать индивидуальный узел B или UE.

На канале связи от UE к узлу B есть выбор миллионов различных псевдокодов (PN), позволяющих выработать индивидуальный код для идентификации UE. В результате имеется более чем достаточно кодов, чтобы разместить большое число различных UE, которые, вероятно, могут обратиться к сети для обслуживания. Для каналов с направлением от узла B к UE используется короткий код. Общее количество различных кодов, которые могут быть использованы, — 512. Один из них назначается каждому узлу B.

7.5.3. Кодирование речи

При кодировании речи в UMTS используются различные скорости и поэтому могут применяться различные вокодеры. Когда система предоставляет возможность использовать различные скорости, она называется "адаптивной многоскоростной системой" (AMRSAdaptive Multi-Rate System). Она может применяться там, где скорость выбирается в соответствии с емкостью и требованиями системы. Эта схема — та же, что используется в GSM.

7.5.4. Прерывистая передача

Одной из важных характеристик мобильных телефонов является время разрядки батареи. Это "ключевая особенность", которой интересуются люди, покупающие телефон, и это определяет его ценность. Принимая во внимание это обстоятельство, в стандарт UMTS/CDMA был введен режим прерывистой передачи (DTXDiscontinuous Transmission) или "спящий режим" (режим ожидания). Этот режим позволяет отключить несколько энергоемких элементов UE до тех пор, пока не будет получен сигнал широковещательного вызова.

Для введения такого механизма в UMTS/CDMA цепи, работающие с широковещательным каналом, разделены на группы и подканалы. Реальный номер используемого широковещательного подканала (используемой части оборудования) назначается сетью. Таким образом, UE только часть времени должен "слушать сеть". Чтобы обеспечить это, канал индикатора вызова (PICH — Paging Indicator Channel) разбит на 10 мс кадры, каждый из которых содержит 300 бит: 288 для широковещательной рассылки данных и 12 незанятых битов. В начале каждого кадра канала широковещательного вызова есть индикатор оповещения (PI — Paging Indicator), который идентифицирует передаваемую группу оповещения. Согласно номеру PI определяется широковещательный канал вызова — можно включить приемник, только когда он должен контролировать широковещательный канал вызова.

7.5.5. Синхронизация

Синхронизация, которая требуется для UMTS-системы, обеспечивается первичным каналом синхронизации (PSCH) и вторичным каналом синхронизации (SSCH). Эти каналы работают по методике, отличающейся от методик нормальных каналов, и в результате они действуют не расширяясь и не используя псевдокоды (PN) и OVSF-коды, — вместо этого для расширения применяются коды синхронизации. Имеются два типа соответствующих кодов. Первый называется "первичный код" и используется PSCH-каналом, а второй — "вторичный код" для применения в SSCH-каналах. Первичный код — один и тот же для всех сот и состоит из последовательности 256 чипов, которые передаются в каждом временном положении. Это позволяет UE синхронизировать свою работу с временными положениями узла B.

Когда UE получает слот синхронизации, это лишь сигнал о начале или конце временного положения, но ничего не известно об особенностях информации, содержащейся в этом временном положении, или о характеристиках кадра. Для передачи этих сведений используются вторичные коды синхронизации.

Всего существует 16 различных вторичных кодов синхронизации. Один из кодов (256 чипов) посылается в начале временного положения. Он содержит 15 кодов синхронизации и 64 кода групп скремблирования. Когда UE получает эту информацию, он может определить, какой код обозначает начало кадра, и таким способом завершить синхронизацию.

Скремблирующие коды в SSCH дают возможность UE идентифицировать, какой код используется в данном случае, и, следовательно, идентифицировать узел B. Скремблирующие коды разделяются на 64 группы, каждая по 8 кодов. Это означает, что после достижения синхронизации кадра UE имеет для выбора только 8 кодов и поэтому может попытаться отслеживать общий пилот-канал (CPICH — Common Pilot Channel). Как только это будет сделано, он сможет "прочитать" широковещательный канал BCH и достигнет еще лучшей синхронизации, что позволит ему отслеживать первичный физический канал управления (PCCPCH — Primary Common Control Physical Channel).

7.5.6. Управление мощностью

Как в любой системе CDMA, в рассматриваемой системе существенно, чтобы узел B получал от всех UE сигнал приблизительно одной и той же мощности. Если это не регулировать, то станции, находящиеся дальше от узла B, будут иметь более низкий уровень сигнала, чем ближайшие. Последние будут подавлять сигналы с низким уровнем, и узел B не сможет принять их. Этот эффект часто упоминается в литературе как эффект "ближний-дальний". Чтобы его преодолеть, узел B передает команды ближним станциям — с целью уменьшить им мощность передачи, а тем, которые дальше, увеличить ее. Этим способом узел B будет получать от всех станций приблизительно одинаковый уровень сигналов.

Управление мощностью также важно для узлов B. Так как сигналы, передаваемые различными узлами, не ортогональны друг другу, возможно, некоторые из них будут влиять друг на друга. Соответственно, их мощности должны быть минимально необходимыми для обслуживаемых UE.

Для регулирования мощности есть два метода: по открытому и по закрытому циклу.

Метод по открытому циклу используется на начальном этапе перед установлением соединения между UE и узлом B. Это простые действия, основанные на измерении напряженности полученного сигнала для принятия решения о требуемой мощности сигнала на передаче. При этом предполагается, что мощности прямого и обратного сигнала коррелированы. Однако частоты прямого и обратного канала различны, и могут отличаться также пути следования, поэтому этот метод не может давать хорошей оценки требуемой мощности. Он может использоваться лишь для приблизительной оценки.

Как только UE получил доступ к системе через узел B, задействуется техника замкнутого цикла. На узле B проводятся измерения в каждом временном положении. Как результат этих измерений, к UE передается информация о регулировании мощности передатчика (запрос на пошаговое увеличение или уменьшение мощности). Этот процесс идет в обоих направлениях (от узла B к UE и обратно). Для непрерывного управления мощности используется фактически один бит (1 — "увеличить", 0 — "уменьшить"). Как только достигается необходимый уровень мощности, его либо уменьшают, либо увеличивают, чтобы обеспечить непрерывность процесса. Практически позиция UE все время изменяется, или изменяется путь следования радиосигнала. В результате движение приводит к изменению уровня сигнала, так что непрерывность процесса регулирования мощности не представляет проблемы.

7.6. Краткие итоги лекции 7

  • Протоколы прикладного уровня сети радиодоступа RAN (RAN Application) — сигнальные протоколы уровня радиосети в интерфейсе Iub. Они управляют сигнализацией и установлением туннельных каналов (GTP —GPRS Tunneling Protocol), т. е. каналов "прозрачной передачи" данных между RNC 3G-SGSN, а также сигнальной информации и сигналов установления соединений для 3G MSC.
  • Процедура "оповещение свободного UE", заключается в том, что станция запрашивает свободный UE. Этот вызов с номером абонента передается управляемым сотам. Требуемый UE устанавливает сигнальное соединение.
  • Жесткий хэндовер используется при передаче соединения системе предыдущего поколения. В данном случае соединение, работающее на одной частоте, должно быть передано каналу другой частоты.
  • Мягкий хэндовер применяется, когда возможна работа смежных сот на одной и той же частоте. В результате возможно, что UE на время перехода получит сигналы из RNC двух смежных сот, и они также смогут получить сигналы от одного и того же UE.
  • Более мягкий хэндовер заключается в том, что каналы от двух RNC воспринимаются как один объединенный и один из каналов исключается после его значительного ослабления. Это обычно происходит при переходе управления в разных секторах одной соты.
  • Всякий хэндовер содержит два подпроцесса: установление нового канала (дополнение радиоканала) и удаление старого канала (удаление канала).
  • Под использование в UMTS/CDMA зарезервированы участки частот: 1920–1980 и 2110–2170 MГц для дуплексного частотного режима разделения (FDD), 1900–1920 — для дуплексного режима разделения по времени, (TDD, TD/CDMA).
  • Для передачи от узла B к UE применяется квадратурно-фазовая манипуляция (QPSK — Quadrature Phase Shift Keying). Для передачи в обратном направлении используются два отдельных канала. Для образования двойного канала (DQPSK — dual channel phase shift keying) применяются специальные модуляторы-демодуляторы.
  • Передаваемые данные кодируются, используя расширяющий код, конкретный для каждого пользователя. Полный коэффициент расширения (отношение ширины полосы частот в радиоканале к скорости передаваемой информации) изменяется, чтобы в полной степени использовать полосу пропускания.
  • При передаче информации от узла B к UE скорость передачи равна 3,84 Мчип/с. При модуляции QPSK возможна передача двух бит на каждый символ (чип) в сек. Таким образом, скорость в канале будет равна 7,68 Мбит/c. Если фактическая скорость передачи данных равна 15 бит/с, то коэффициент расширения — 512.
  • Ортогональные коды с переменным коэффициентом расширения (OVSF — Orthogonal Variable Spreading Factor codes) — это ансамбль кодов с переменной длиной; он формируется на основе кодового дерева, каждый уровень которого удваивает число возможных комбинаций и длину кода.
  • При кодировании речи в UMTS используются различные скорости и, соответственно, различные вокодеры. Когда система предоставляет возможность применять различные скорости, она называется "адаптивной многоскоростной системой" (AMRSAdaptive Multi-Rate System).
  • UMTS/CDMA был введен режим прерывистой передачи (DTXDiscontinuous Transmission) или "спящий режим" (режим ожидания): приемник включается, только когда он должен контролировать широковещательный канал вызова. Приемник с его радиоцепями будет потреблять мощность только в это время, и это позволит сэкономить энергию батареи.
  • Синхронизация, которая требуется для UMTS-системы, обеспечивается первичным каналом синхронизации (PSCH) и вторичным каналом синхронизации (SSCH). Эти каналы работают по методикам, отличающимся от методик обычных каналов, и в результате они не расширяются и не используют псевдокоды (PN) и OVSF-коды.
  • Для регулирования мощности есть два метода: по открытому и по закрытому циклу. метод по открытому циклу применяется на начальном этапе перед установлением соединения между UE и узлом B требуемой мощности. Он может использоваться как приблизительная оценка. Как только UE получает доступ к системе через узел B, задействуется техника закрытого цикла.

Задачи и упражнения к части 3

  1. Используя табл. 7.17.3, представьте конкретные процедуры на рис. 7.117.17.
  2. Объясните, когда применяются процедуры передачи сигнала оповещения (Paging).
  3. Перечислите, какие действия осуществляются по сигналу активизации обновления данных в процедуре "дополнение ветви" ( рис. 7.11).
  4. Перечислите, какие действия осуществляются по сигналу активизации обновления данных в процедуре "удаление ветви".
  5. Объясните порядок действий в процедурах жесткого хэндовера. Какие ветви удаляются, какие дополняются и в каком порядке ( рис. 7.97.17)?
  6. Объясните действия на рис. 7.14. Для чего передается на этапе 2 временный номер радиосети (RNTI — Radio Network Temporary Identity)? Поясните информацию, передаваемую на этапе 4 (запрос на изменение местоположения) на рис. 7.14.
  7. Какие участки частотного спектра зарезервированы для UMTS:
    • для дуплексного режима разделения?
    • для режима разделения времени?
    • для спутникового канала связи?
Елена Сапегова
Елена Сапегова

для получения диплома нужно ли кроме теоретической части еще и практическую делать? написание самого диплома требуется?

Виталий Гордиевских
Виталий Гордиевских

Здравстивуйте, диплом о профессиональной переподготовке по программе "Сетевые технологии" дает право на ведение профессиональной деятельности в какой сфере? Что будет написано в дипломе? (В образце просто ничего неуказано)

Напимер мне нужно чтоб он подходил для направления 09.03.01 Информатика и вычислительная техника

Дмитрий Одинцов
Дмитрий Одинцов
Россия, г. Екатеринбург
Максим Глотов
Максим Глотов
Россия