Опубликован: 15.09.2004 | Доступ: свободный | Студентов: 3953 / 1492 | Оценка: 4.31 / 4.05 | Длительность: 09:26:00
ISBN: 978-5-9556-0018-5
Специальности: Разработчик аппаратуры
Лекция 10:

Коммутаторы для многопроцессорных вычислительных систем. Составные коммутаторы. Распределенные составные коммутаторы

< Лекция 9 || Лекция 10: 12 || Лекция 11 >

Распределенные составные коммутаторы

В распределенных вычислительных системах ресурсы разделяются между задачами, каждая из которых исполняется на своем подмножестве процессоров. В связи с этим возникает понятие близости процессоров, которая является важной для активно взаимодействующих процессоров. Обычно близость процессоров выражается в различной каскадности соединений, различных расстояниях между ними.

Один из вариантов создания составных коммутаторов заключается в объединении прямоугольных коммутаторов (v+1 x v+1), v > 1 таким образом, что один вход и один выход каждого составляющего коммутатора служат входом и выходом составного коммутатора. К каждому внутреннему коммутатору подсоединяются процессор и память, образуя вычислительный модуль с v-каналами для соединения с другими вычислительными модулями. Свободные v-входов и v-выходов каждого вычислительного модуля соединяются линиями "точка-точка" с входами и выходами других коммутаторов, образуя граф межмодульных связей .

Наиболее эффективным графом межмодульных связей с точки зрения организации обмена данными между вычислительными модулями является полный граф. В этом случае между каждой парой вычислительных модулей существует прямое соединение. При этом возможны одновременные соединения между произвольными вычислительными модулями.

Однако обычно создать полный граф межмодульных связей невозможно по ряду причин. Обмен данными приходится производить через цепочки транзитных модулей. Из-за этого увеличиваются задержки, и ограничивается возможность установления одновременных соединений. Таким образом, эффективный граф межмодульных связей должен минимизировать время межмодульных обменов и максимально увеличить количество одновременно активизированных соединений. Кроме того, на выбор графа межмодульных связей влияет учет отказов и восстановлений вычислительных модулей и линий связи.

Граф межмодульных связей Convex Exemplar SPP1000

В качестве примера реального графа межмодульных связей рассмотрим структуру системы Convex Exemplar SPP1000. В основе каждого составного блока системы лежит прямоугольный коммутатор (5 х 5), до 16 подобных блоков объединяются каналами "точка-точка" в кольцо ( одномерный тор ), состоящее из четырех независимых подканалов.

Граф межмодульных связей Convex Exemplar SPP1000

Рис. 10.2. Граф межмодульных связей Convex Exemplar SPP1000

Внутри каждого блока четыре входа и выхода прямоугольного коммутатора (5 х 5) используются для взаимодействия устройств внутри блока (при этом в каждом блоке располагается по два процессора), пятые вход и выход используются для объединения блоков в кольцо. При этом каждый из четырех кольцевых каналов рассматривается как независимый ресурс, и система сохраняет работоспособность до тех пор, пока существует хотя бы один функционирующий кольцевой канал.

Граф межмодульных связей МВС-100

Система МВС-100 предлагает блочный подход к построению архитектуры параллельной вычислительной системы. Структурный модуль системы состоит из 16 вычислительных узлов, образующих матрицу 4х4 (рис. 10.3). Угловые узлы соединяются попарно по диагонали, таким образом, максимальная длина пути между любой парой элементов равна трем. В исходной же матрице 4 х 4 эта длина равна шести. Каждый блок имеет 12 выходов, что позволяет объединять их в более сложные структуры.

Структурный модуль МВС-100

Рис. 10.3. Структурный модуль МВС-100

Для МВС-100 базовый вычислительный блок содержит 32 узла. Такой блок строится из двух структурных модулей в соответствии со схемой, приведенной на рис. 10.4. В этом случае максимальная длина пути между любой парой вычислительных узлов равна пяти. При этом остается 16 свободных связей, что позволяет продолжить объединение. При объединении двух базовых блоков по схеме, приведенной на рис. 10.4 (64 вычислительных узла) максимальная длина пути составит 6, как и в гиперкубе, а количество свободных связей будет равно 16.

Варианты объединения структурных модулей МВС-100

Рис. 10.4. Варианты объединения структурных модулей МВС-100

Граф межмодульных связей МВС-1000

Архитектура системы МВС-1000 аналогична архитектуре МВС-100. Основой системы является масштабируемый массив процессорных узлов. Каждый узел содержит вычислительный микропроцессор Alpha 21164 с производительностью 2 GFLOPS при тактовой частоте 500 MHz и оперативную память объемом 128 MB, с возможностью расширения. Процессорные узлы взаимодействуют через коммуникационные процессоры TMS320C44 производства Texas Instruments, имеющие по 4 внешних канала (линка) с общей пропускной способностью 80 Мбайт/с (20 Мбайт/с каждый). Также разрабатывается вариант системы с использованием коммуникационных процессоров SHARC (ADSP 21060) компании Analog Devices, имеющих по 6 каналов с общей пропускной способностью до 240 Мбайт/с (40 Мбайт/с каждый).

Процессорные узлы связаны между собой по оригинальной схеме, сходной с топологией двухмерного тора (для 4-линковых узлов). Аналогично МВС-100, структурный модуль МВС-1000 состоит из 16 вычислительных модулей, образующих матрицу 4 x 4, в которой четыре угловых элемента соединяются через транспьютерные линки по диагонали попарно. Оставшиеся 12 линков предназначаются для подсоединения внешних устройств (4 линка угловых ВМ) и соединений с подобными ВМ.

Конструктивным образованием МВС-1000 является базовый вычислительный блок, содержащий 32 вычислительных модуля. Максимальная длина пути между любыми из 32 вычислительных модулей равна пяти, при этом число свободных линков после комплектации блока составляет 16, что позволяет продолжить процедуру объединения. Возможная схема объединения четырех базовых блоков в 128-процессорную систему приведена на рис. 10.5.

Структура 128-процессорной системы МВС-1000, 4 базовых блока

Рис. 10.5. Структура 128-процессорной системы МВС-1000, 4 базовых блока
< Лекция 9 || Лекция 10: 12 || Лекция 11 >