Сибирский университет потребительской кооперации
Опубликован: 04.05.2005 | Доступ: свободный | Студентов: 4322 / 1347 | Оценка: 4.45 / 4.22 | Длительность: 12:28:00
ISBN: 978-5-9556-0034-5
Лекция 4:

Рекурсия

< Лекция 3 || Лекция 4: 123 || Лекция 5 >

Второй вариант решения проблемы - добавить в первое предложение процедуры отсечение. Напомним, что вызов отсечения приводит к тому, что предложения процедуры, расположенные ниже той, из которой оно было вызвано, не рассматриваются. И, соответственно, после того, как какая-то цель будет согласована с заголовком первого предложения, сработает отсечение, и попытка унифицировать цель с заголовком второго предложения не будет предпринята. Процедура в этом случае будет выглядеть так:

fact(1,1):-!. /* условие останова рекурсии */
fact(N,F):-
	N1=N-1,
	fact(N1,F1), /* F1 равен факториалу числа, 
	                на единицу меньшего исходного 
	                числа */
	F=F1*N. /* факториал исходного числа равен 
	           произведению F1 на само число */

Конечно, с одной стороны, метод рекурсии имеет свои преимущества перед методом итерации, который используется в императивных языках программирования намного чаще. Рекурсивные алгоритмы, как правило, намного проще с логической точки зрения, чем итерационные. Некоторые алгоритмы удобно записывать именно рекурсивно.

С другой стороны, рекурсия имеет большой недостаток: ей, вообще говоря, может не хватать для работы стека. При каждом рекурсивном вызове предиката в специальном стековом фрейме запоминаются все промежуточные переменные, которые могут понадобиться. Максимальный размер стека при работе под управлением операционной системы MS DOS всего 64 Кб. Этого достаточно для размещения около трех-четырех тысяч стековых фреймов (в зависимости от количества и размера промежуточных переменных). При больших входных значениях стека может не хватить.

Есть, правда, один вариант рекурсии, который использует практически столько же оперативной памяти, сколько итерация в императивных языках программирования. Это так называемая хвостовая или правая рекурсия. Для ее осуществления рекурсивный вызов определяемого предиката должен быть последней подцелью в теле рекурсивного правила и к моменту рекурсивного вызова не должно остаться точек возврата (непроверенных альтернатив). То есть у подцелей, расположенных левее рекурсивного вызова определяемого предиката, не должно оставаться каких-то непроверенных вариантов и у процедуры не должно быть предложений, расположенных ниже рекурсивного правила. Турбо Пролог, на который мы ориентируемся в нашем курсе, распознает хвостовую рекурсию и устраняет связанные с ней дополнительные расходы. Этот процесс называется оптимизацией хвостовой рекурсии или оптимизацией последнего вызова.

Пример. Попробуем реализовать вычисление факториала с использованием хвостовой рекурсии. Для этого понадобится добавить два дополнительных параметра, которые будут использоваться нами для хранения промежуточных результатов. Третий параметр нужен для хранения текущего натурального числа, для которого вычисляется факториал, четвертый параметр - для факториала числа, хранящегося в третьем параметре.

Запускать вычисление факториала мы будем при первом параметре равном числу, для которого нужно вычислить факториал. Третий и четвертый аргументы будут равны единице. Во второй аргумент по завершении рекурсивных вычислений должен быть помещен факториал числа, находящегося в первом параметре. На каждом шаге будем увеличивать третий аргумент на единицу, а второй аргумент умножать на новое значение третьего аргумента. Рекурсию нужно будет остановить, когда третий аргумент сравняется с первым, при этом в четвертом аргументе будет накоплен искомый факториал, который можно поместить в качестве ответа во второй аргумент.

Вся процедура будет выглядеть следующим образом:

fact2(N,F,N,F):-!. /* останавливаем рекурсию, когда третий 
                      аргумент равен первому*/
fact2(N,F,N1,F1):-
	N2=N1+1, /* N2 - следующее натуральное число 
	            после числа N1 */
	F2=F1*N2, /* F2 - факториал N2 */
	fact2(N,F,N2,F2). 
	/* рекурсивный вызов с новым натуральным 
	   числом N2 и соответствующим ему 
	   посчитанным факториалом F2 */

Остановить рекурсию можно, воспользовавшись отсечением в базисе рекурсии, как это было сделано выше, или добавив в начало второго предложения сравнение N1 с N.

Если мы решим, что вызывать предикат с четырьмя аргументами неудобно, можно ввести дополнительный двухаргументный предикат, который будет запускать исходный предикат:

factM(N,F):-
	fact2(N,F,1,1). /* вызываем предикат с уже 
	                   заданными начальными 
	                   значениями */

Пример. В предыдущей лекции мы записали аналог императивного ветвления, воспользовавшись отсечением. Теперь напишем, используя рекурсию и отсечение, реализацию цикла с предусловием. Обычно этот цикл выглядит примерно так: while <условие> do P. Это соответствует текстовому описанию "пока имеет место <условие>, выполнять P ". На Прологе подобную конструкцию можно записать следующим образом:

w:-
   <условие>,p,w.
w:-!.

Пример. Еще одна классическая задача, имеющая рекурсивное решение, связана с вычислением так называемых чисел Фибоначчи. Числа Фибоначчи можно определить так: первое и второе числа равны единице, а каждое последующее число является суммой двух предыдущих. Соответственно, третье число Фибоначчи будет равно двум, четвертое равно трем (сумма второго числа (один) и третьего числа (два)), пятое - пяти (сумма третьего и четвертого чисел, то есть двух и трех), шестое - восьми (сумма четвертого и пятого, трех и пяти) и т.д.

Базисов рекурсии в данном случае два. Первый будет утверждать, что первое число Фибоначчи равно единице. Второй базис - аналогичное утверждение про второе число Фибоначчи. Шаг рекурсии также будет необычным, поскольку будет опираться при вычислении следующего числа Фибоначчи не только на предшествующее ему число, но и на предшествующее предыдущему числу. В нем будет сформулировано, что для вычисления числа Фибоначчи с номером N сначала нужно вычислить и сложить числа Фибоначчи с номерами N-1 и N-2.

Записать эти рассуждения можно так:

fib(1,1):-!. /* первое число Фибоначчи равно единице */
fib(2,1):-!. /* второе число Фибоначчи равно единице */
fib(N,F) :-
	N1=N-1, fib(N1,F1), /* F1 это N-1-е число 
	                       Фибоначчи */
	N2=N-2, fib(N2,F2), /* F2 это N-2-е число 
	                       Фибоначчи */
	F=F1+F2. /* N-е число Фибоначчи равно сумме 
	            N-1-го и N-2-го чисел Фибоначчи */

Обратите внимание на отсечение в первых двух предложениях. Оно служит для остановки рекурсии, чтобы при прямом ходе рекурсии не произошло выхода из области натуральных чисел (номеров чисел Фибоначчи) в область отрицательных чисел, как это происходило у нас в первой версии предиката, вычисляющего факториал.

Вместо этих двух отсечений от зацикливания можно избавиться путем добавления в начало правила, реализующего шаг рекурсии, проверки значения, находящегося в первом параметре предиката ( N>2 ). Это условие в явном виде указывает, что рекурсивное правило применяется для вычисления чисел Фибоначчи, начиная с третьего.

Но надо сказать, что хотя наше решение получилось ясным и прозрачным, довольно точно соответствующим определению чисел Фибоначчи, оно, тем не менее, весьма неэффективное. При вычислении N-1 -го числа Фибоначчи F1 вычисляются все предыдущие числа Фибоначчи, в частности, N-2 -е число Фибоначчи F2. После этого заново начинает вычисляться N-2 -е число Фибоначчи, которое уже было вычислено. Мало того, опять вычисляются все предыдущие числа Фибоначчи. Получается, что для вычисления числа Фибоначчи используется количество рекурсивных вызовов предиката fib, равное искомому числу Фиббоначи.

Давайте попробуем повысить эффективность вычисления чисел Фибоначчи. Будем искать сразу два числа Фибоначчи: то, которое нам нужно найти, и следующее за ним. Соответственно, предикат будет иметь третий дополнительный аргумент, в который и будет помещено следующее число. Базис рекурсии из двух предложений сожмется в одно, утверждающее, что первые два числа Фибоначчи равны единице.

Вот как будет выглядеть этот предикат:

fib_fast(1,1,1):-!. /* первые два числа Фибоначчи равны 
                       единице */
fib_fast(N,FN,FN1):-
	N1=N-1,fib_fast(N1,FN_1,FN), 
	/* FN_1 это N-1-е число 
	   Фибоначчи, FN это 
	   N-е число Фибоначчи */
FN1=FN+FN_1. /* FN1 это N+1-е число Фибоначчи */

Несмотря на то, что предикат fib_fast находит, в отличие от предиката fib, не одно число Фибоначчи, а сразу два, он использует намного меньше стекового пространства и работает во много раз быстрее. Для вычисления числа Фибоначчи с номером N (а заодно и N+1 -го числа Фибоначчи) необходимо всего лишь N рекурсивных вызовов предиката fib_fast.

Если нам не нужно следующее число Фибоначчи, можно сделать последним аргументом анонимную переменную или добавить описанный ниже двухаргументный предикат:

fib_fast(N,FN):- 
	fib_fast(N,FN,_).

Обратите внимание, что если во втором правиле процедуры, описывающей предикат предок, с которого мы начали знакомство с рекурсией, изменить порядок подцелей, с декларативной точки зрения смысл останется прежним:

предок2(Предок,Потомок):-
	родитель(Предок,Потомок). /* предком является 
	                             родитель */
предок2(Предок,Потомок):-
	предок2(Человек,Потомок), /* предком является 
	                             родитель предка */
родитель(Предок,Человек).

Однако работать модифицированная процедура будет совсем не так. В случае, если вызвать предикат предок2, указав в качестве аргументов имена людей, один из которых является предком другого, он успешно подтвердит, что первый человек - предок второго. Во всех остальных ситуациях (один из аргументов свободен; человек, имя которого указано в качестве первого аргумента, не является предком человека, чье имя указано в качестве второго аргумента) все произойдет не так, как следовало бы. После того, как этот предикат выдаст те же ответы, что и исходный предикат предок, он зациклится и в итоге выдаст сообщение о том, что стек переполнен.

С оригинальным предикатом предок этого не происходило, потому что в его втором правиле первой подцелью стоял вызов подцели родитель. В результате выполнения этой подцели переменная Человек получала в качестве значения имя какого-то человека. Поэтому в момент вызова второй подцели предок(Человек,Потомок) переменная Человек была уже связанной. В новой же версии предиката второе правило начинается с вызова подцели предок2(Человек,Потомок), причем переменная Человек в ней свободна. После того, как будут исчерпаны все альтернативы для означивания свободных переменных через первое предложение процедуры, подцель будет унифицироваться с заголовком второго предложения. Свободная переменная Человек будет связана с переменной Предок, а переменная Потомок подцели - с переменной Потомок заголовка правила. При попытке выполнить первую подцель правила все повторится. Этот процесс будет продолжаться до тех пор, пока не будет исчерпано все свободное пространство стека.

Такой вид рекурсии, когда тело правила начинается с рекурсивного вызова определяемого предиката, называется левосторонней рекурсией. С левосторонней рекурсией очень часто возникают описанные проблемы. Поэтому нужно стараться, если возможно, избегать использования левосторонней рекурсии, в отличие от правосторонней или хвостовой рекурсии.

< Лекция 3 || Лекция 4: 123 || Лекция 5 >
Виктор Бондарь
Виктор Бондарь

После приведения формулы вида ПНФ к виду ССФ вы получаете формулу, в безквантовой матрице которой дизъюнкт содержит оба контранрных атома:. Как тогда проводить его унификацию, если в случае замены x на f(x) весь дизъюнкт обратится в единицу?

Ольга Потапенко
Ольга Потапенко

никак не могу увидеть тексты самих лекций.