Опубликован: 17.10.2005 | Доступ: свободный | Студентов: 1 / 0 | Оценка: 4.38 / 4.10 | Длительность: 41:16:00
ISBN: 978-5-7502-0255-3
Специальности: Программист
Лекция 3:

Модульность

Аннотация: В лекциях 3-6 будут рассмотрены требования к разработке программного продукта, которые почти наверняка приведут нас к объектной технологии.

Второе [из правил, которые я решил твердо соблюдать] - делить каждую из рассматриваемых мною трудностей на столько частей, сколько потребуется, чтобы лучше их разрешить.

Третье - располагать свои мысли в определенном порядке, начиная с предметов простейших и легко познаваемых, и восходить мало-помалу, как по ступеням, до познания наиболее сложных, допуская существование порядка даже среди тех, которые в естественном ходе вещей не предшествуют друг другу.

Рене Декарт, "Рассуждения о методе" (1637)

Чтобы обеспечить расширяемость (extendibility) и повторное использование (reusability), двух основных факторов качества, предложенных в лекции 1, необходима система с гибкой архитектурой, состоящая из автономных программных компонент. Именно поэтому в лекции 1 введен термин модульность (modularity), сочетающий оба фактора.

Модульное программирование ранее понималось как сборка программ из небольших частей, обычно подпрограмм. Но такой подход не может обеспечить реальную расширяемость и повторное использование программного продукта, если не гарантировать, что элементы сборки - модули - являются самодостаточными и образуют устойчивые структуры. Любое достаточно полное определение модульности должно обеспечивать реализацию этих свойств.

Таким образом, метод проектирования программного продукта является модульным, если он помогает проектировщикам создать систему, состоящую из автономных элементов с простыми и согласованными структурными связями между ними. Цель этой лекции - детализация этого неформального определения и выяснение того, какими конкретно свойствами должен обладать метод, заслуживающий название "модульного". Наше внимание будет сосредоточено на этапе проектирования, но все идеи применимы и к ранним этапам - анализа и спецификации, также как и к этапам разработки и сопровождения.

Рассмотрим модульность с разных точек зрения. Введем набор дополнительных свойств: пять критериев (criteria), пять правил (rules) и пять принципов (principles) модульности, обеспечивающих при их совместном использовании выполнение наиболее важных требований, предъявляемых к методу модульного проектирования.

Для практикующего разработчика ПО принципы и правила не менее важны, чем критерии. Различие лишь в причинной связи: критерии являются взаимно независимыми (метод может удовлетворять одному из них и в тоже время противоречить оставшимся), в то время как правила следуют из критериев, а принципы следуют из правил.

Можно было бы ожидать, что эта лекция начнется с подробного описания того, как выглядит модуль. Но это не так, и для этого есть серьезные основания. Задача этой и двух следующих лекций - анализ свойств, которыми должна обладать надлежащим образом спроектированная модульная структура. Вопросом о виде модулей мы займемся в конце нашего обсуждения, а не в его начале. И пока мы не дойдем до этой точки, слово "модуль" будет означать компонент разбиения рассматриваемой системы. Если вы знакомы с не ОО-методами, то, вероятно, вспомните о подпрограммах, имеющихся в большинстве языков программирования и проектирования, или, быть может, о пакетах (packages) языка Ada и (правда, под другим названием) языка Modula. Наконец, в последующих лекциях наше обсуждение приведет к ОО-виду модуля - классу. Даже если вы уже знакомы с классами и ОО-методами, все же следует прочитать эту лекцию для понимания требований, предъявляемых к классам, - это поможет правильному их конструированию.

Пять критериев

Метод проектирования, который можно называть "модульным", должен удовлетворять пяти основным требованиям:

  • Декомпозиции (decomposability).
  • Композиции (composability).
  • Понятности (understandability).
  • Непрерывности (continuity).
  • Защищенности (protection).

Декомпозиция

Метод проектирования удовлетворяет критерию Декомпозиции, если он помогает разложить задачу на несколько менее сложных подзадач, объединяемых простой структурой, и настолько независимых, что в дальнейшем можно отдельно продолжить работу над каждой из них.

Такой процесс часто будет циклическим, поскольку каждая подзадача может оказаться достаточно сложной и потребует дальнейшего разложения.

Декомпозиция

Рис. 3.1. Декомпозиция

Следствием требования декомпозиции является разделение труда (division of labor): как только система будет разложена на подсистемы, работу над ними следует распределить между разными разработчиками или группами разработчиков. Это трудная задача, так как необходимо ограничить возможные взаимозависимости между подсистемами:

  • Необходимо свести такие взаимозависимости к минимуму; в противном случае разработка каждой из подсистем будет ограничиваться темпами работы над другими подсистемами.
  • Эти взаимозависимости должны быть известны: если не удастся составить перечень всех связей между подсистемами, то после завершения разработки проекта будет получен набор элементов программы, которые, возможно, будут работать каждая в отдельности, но не смогут быть собраны вместе в завершенную систему, удовлетворяющую общим требованиям к исходной задаче.

Наиболее очевидным примером обсуждаемого метода1Дальнейшее обсуждение метода нисходящего проектирования показывает, что этот метод не вполне согласуется с другими критериями модульности., удовлетворяющим критерию декомпозиции, является метод нисходящего (сверху вниз) проектирования (top-down design). В соответствии с этим методом разработчик должен начать с наиболее абстрактного описания функции, выполняемой системой. Затем последовательными шагами детализировать это представление, разбивая на каждом шаге каждую подсистему на небольшое число более простых подсистем до тех пор, пока не будут получены элементы с настолько низким уровнем абстракции, что становится возможной их непосредственная реализация. Этот процесс можно представить в виде дерева.

Иерархия нисходящего проектирования

Рис. 3.2. Иерархия нисходящего проектирования

Типичным контрпримером (counter-example) является любой метод, предусматривающий включение в разрабатываемую систему модуля глобальной инициализации. Многие модули системы нуждаются в инициализации - открытии файлов или инициализации переменных.

Каждый модуль должен произвести эту инициализацию до начала выполнения непосредственно возложенных на него операций. Могло бы показаться, что все такие действия для всех модулей системы неплохо сосредоточить в одном модуле, который проинициализирует сразу все для всех. Подобный модуль будет обладать хорошей "согласованностью во времени" (temporal cohesion) в том смысле, что все его действия выполняются на одном этапе работы системы. Однако для получения такой "согласованности во времени", придется нарушать автономию других модулей. Придется модулю инициализации дать право доступа ко многим структурам данных, принадлежащим различным модулям системы и требующим специфических действий по их инициализации. Это означает, что автор модуля инициализации должен будет постоянно следить за структурами данных других модулей и взаимодействовать с их авторами. А это несовместимо с критерием декомпозиции.

Термин "согласованность во времени" пришел из метода, известного как структурное проектирование (см. комментарии к библиографии).

В объектно-ориентированном методе каждый модуль должен самостоятельно инициализировать свои структуры данных.
Александр Шалухо
Александр Шалухо
Анатолий Садков
Анатолий Садков

При заказе pdf документа с сертификатом будет отправлен только сертификат или что-то ещё?