Кабардино-Балкарский государственный университет
Опубликован: 09.11.2006 | Доступ: свободный | Студентов: 0 / 0 | Оценка: 4.16 / 3.97 | Длительность: 10:45:00
ISBN: 978-5-94774-678-5
Специальности: Программист
Лекция 4:

Системы счисления и действия в них

< Лекция 3 || Лекция 4: 12 || Лекция 5 >
Аннотация: Рассматриваются основные понятия числовых систем, правила их построения, выполнение действия в них.

Алфавит Х из р символов и правила записи (изображения) и обработки чисел с помощью символов этого алфавита называются системой счисления (нумерацией) с основанием р. Число х в системе с основанием р обозначается как (х)р или хр .

Любая система счисления – это система кодирования числовых величин (количеств), позволяющая выполнять операции кодирования и декодирования, то есть по любой количественной величине однозначно находить его кодовое представление и по любой кодовой записи – восстанавливать соответствующую ей числовую величину.

Все системы счисления строятся по общему принципу: определяется величина роснование системы, а любое число х записывается в виде комбинации степеней веса р от 0-й до n-й степени следующим образом:

(x)10 = xnpn + xn–1pn–1 + ... + x1p1 + x0p0 .

Наиболее используемые в информатике системы счисления, кроме, естественно, десятичной, – это: 1) двоичная, над алфавитом Х = {0,1} ; 2) восьмеричная, над Х = {0, 1, 2, 3, 4, 5, 6, 7} ; 3) шестнадцатеричная, над Х = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, А, В, С, D, Е, F}, где символы А, В, С, D, Е, F имеют, соответственно, десятичные веса 10, 11, 12, 13, 14, 15.

Пример. 11012 = 1 x 23 + 1 x 22 + 0 x 21 + 1 x 20 = 8 + 4 + 1 = 1310 ,

1578 = 1 x 82 + 5 x 81 + 7 x 80 = 64 + 40 + 7 = 11110 ,

A6F16 = 10 x 256 + 6 x 16 + 15 x 1 = 267110 .

В большинстве систем счисления вес цифры (или символа алфавита) зависит от ее места в записи числа или слова. Такая система счисления называется позиционной ; в противном случае система называется непозиционной.

Пример. Непозиционная система – древняя римская система записи чисел с алфавитом вида Х={I (1), V (5), Х (10), L (50), С (100), D (500), М (1000)}, где в скобках указаны веса символов (не зависящие от позиции символа). Примеры римских чисел (в скобках – обычные десятичные эквиваленты): III (3), IV (4), V (5), VI (6), IX (9), XI (11), DCL (650). Запись числа в этой системе получается двусторонней конкатенацией, причем правая конкатенация ассоциируется с добавлением, а левая конкатенация – с убавлением (например, IV и VI ). Поразрядное же выполнение арифметических операций не имеет места (например, XIV + IV = XVIII ).

Для изображения десятичных дробей используется подобная формула разложения по степеням основания.

Пример. 110,0012 = 1x22 + 1 x 21 + 0 x 20 + 0 x 2-1 + 0 x 2-2 + 1 x 2-3 = 6,12510 ;

A,B16 = A x 160 + B x 16-1 = 10 x 1 + 11 x 0,0625 = 10,687510 .

Процедура перевода десятичных чисел в р-ную систему счисления:

  1. перевести отдельно целую часть числа х, для чего последовательно делить сперва целую часть [х]10 , а затем все частные (получаемые при делении) на р до тех пор, пока не получим в очередном частном число меньшее р ; изображение [х]p получается последовательным приписыванием к последнему частному остатков от деления – от последнего до первого;
  2. перевести отдельно дробную часть (мантиссу) числа, то есть {x}10 , для чего последовательно умножать сперва исходную мантиссу, а затем мантиссы получаемых чисел на р до тех пор, пока не получим мантиссу, равную нулю, или нужное количество цифр в {х}p ; изображение {х}p получается приписыванием к целой части первого произведения второй такой же цифры и т.д., до последней цифры целой части;
  3. результат будет иметь вид (х)р = [х]p, {х}p .

Пример. Найти: 12,810 = ?2 . Решение:

  1. Переводим целую часть: 1210 =11002;
  2. переводим дробную часть: 0,8 x 2 = 1,6; 0,6 x 2 = 1,2; 0,2 x 2 = 0,4; 0,4 x 2 = 0,8; 0,810 = 0,1100110...2 ;
  3. результат перевода: 12,810 = 1100,1100110011...2 .

Пример. Найдем 29,2510 = ?8 . Решение имеет вид 1) 2910 = 358 ; 2) 0,2510 = 0,28 ; 3) 29,2510 = 35,28 .

Пример. Найдем 79,2610 = ?16 . Решение: 1) 7910 = 4F16 ; 2) 0,2610 = 0,4016 ; 3) 79,2610 = 4F,416 . При переводе дробной части мы ограничились нахождением двух значащих цифр после запятой, ибо перевод точно сделать невозможно.

Для перевода из 2-ной в 8-ную и наоборот, из 2-ной в 16-ную и наоборот, из 8-ной в 16-ную и обратно, используется таблица следующего вида:

ОСНОВАНИЕ СИСТЕМЫ
10 2 8 16
0 0 000 0000
1 1 001 0001
2 010 0010
3 011 0011
4 100 0100
5 101 0101
6 110 0110
7 111 0111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

При переводе в 8-ную систему или из нее необходимо группировать в тройки биты, а при переводе в 16-ную или из нее – группировать их в четверки битов. Можно добавлять, если нужно, незначащие нули (слева от целой части и справа от мантиссы) или отбрасывать их.

Пример. Рассмотрим переводы в смешанных системах.

  1. Из 2-ной системы в 8-ную (двоично-восьмеричное изображение):


  2. из 8-ной системы в 2–ную (восьмерично-двоичное изображение):


  3. из 2-ной системы в 16-ную (двоично-шестнадцатеричное изображение):


  4. из 16-ной системы в 2-ную (шестнадцатерично-двоичное изображение):


Сложение в двоичной системе счисления осуществляется по правилам

0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 210 = 102 (единица идет в старший разряд).

Таблица вычитания в двоичной системе счисления имеет вид

0 – 0 = 0, 1 – 0 = 1, 1 – 1 = 0, 0 – 1 = 10 – 1 = 1 (единицу забираем у старшего разряда).

Таблица умножения в двоичной системе счисления имеет вид

0 x 0 = 0, 0 x 1 = 0, 1 x 0 = 0, 1 x 1 = 1.

Таблица деления в двоичной системе счисления имеет вид

0 : 0 = не определено, 1 : 0 = не определено, 0 : 1 = 0, 1 : 1 = 1.

< Лекция 3 || Лекция 4: 12 || Лекция 5 >
Ирина Рыбакова
Ирина Рыбакова

Здравствуйте,ясдавала 15 тестов и экзамен. Мне нужно сейчас посмотреть результаты тестов.Как это сдлеать?

Анастасия Тимофеева
Анастасия Тимофеева