Ферромагнетики – это вещества, имеющие очень большую относительную магнитную проницаемость ( \[ \mu_r\approx 10^2 - 10^5 \] ) из-за того, что магнитные моменты атомов и электронов, из которых они состоят, благодаря обменному взаимодействию спонтанно стремятся сориентироваться в одинаковом направлении (поскольку это для них энергетически выгодно). И хотя этому противодействует хаотическое тепловое движение частиц, при температурах ниже так называемой "точки Кюри" такая спонтанная намагниченность все-таки "замораживается". Образуются "домены" – микроскопические компактные области однородной намагниченности, которые под влиянием внешнего магнитного поля ведут себя (перемагничиваются) как единое целое. Размеры доменов зависят от многих факторов и лежат в диапазоне от 10 нм до 100 мкм. Магнитные домены размером свыше 1 мкм можно наблюдать с помощью оптического микроскопа. На рис. 10.1, например, показана микрофотография магнитных доменов, полученная в оптическом микроскопе методом Керра. На ней четко видны микрокристаллы (кристаллические "зерна") и их разбиение на домены (более светлые и более темные участки внутри зерен).
Для наблюдения и изучения поведения доменов нанометрового диапазона размеров применяют электронную микроскопию, атомно-силовые и туннельные растровые микроскопы, о которых мы рассказали в "Что такое "Наноэлектронная элементная база информатики"? Как "увидеть" наноразмерные элементы?" .
Соседние магнитные домены отделены друг от друга доменными стенками – сверхтонкими промежуточными слоями, в которых вектор намагниченности изменяет свое направление от ориентации в одном соседнем домене к ориентации в другом. На формирование этих стенок нужна дополнительная энергия. Однако она значительно меньше, чем выигрыш энергии благодаря спонтанному намагничиванию доменов.
При отсутствии внешнего магнитного поля ( \[ H = 0 \] ) направления намагниченности доменов настолько хаотичны, что суммарный магнитный момент ферромагнетика, состоящего из большого количества зерен и доменов в них, равен нулю ( рис. 10.2.а).
При наложении внешнего магнитного поля \[ H \] (его направление показано жирными стрелками) на магнитные моменты доменов действуют силы, стремящиеся повернуть их в направлении поля. Такая переориентация приводит к значительному усилению суммарного магнитного поля.
В слабом магнитном поле происходит лишь частичный поворот магнитных моментов доменов в направлении внешнего магнитного поля ( рис. 10.2.б). Частичный поворот доменов является обратимым процессом: если внешнее поле снимается, то магнитные моменты доменов возвращаются в исходное состояние. В этом диапазоне значений напряженности внешнего магнитного поля \[ H \] (в А/м) имеет место пропорциональность \[ B=\mu H \] где \[ B \] - величина магнитной индукции внутри ферромагнетика (в теслах, Тл), \[ \mu=\mu_0\mu_r=4\pi\cdot 10^{-7} \] (Н/А2) – его магнитная проницаемость. В более сильных магнитных полях начинается сдвиг доменных стенок, за счет чего домены, магнитные моменты которых сориентированы в направлении внешнего поля, увеличиваются в объеме, некоторые домены объединяются, а объем других доменов уменьшается ( рис. 10.2.в). Процесс становится необратимым: если выключить внешнее магнитное поле, то в ферромагнетике наблюдается остаточная намагниченность. Рост магнитной индукции \[ B \] с увеличением \[ H \] замедляется, линейность (10.1) уже не соблюдается. В довольно сильном внешнем магнитном поле магнитные моменты всех доменов сориентированы в одном направлении ( рис. 10.2.г), и дальнейший рост магнитной индукции \[ B \] с увеличением \[ H \] почти прекращается. Такое состояние называют "техническим насыщением".
Типичная "кривая перемагничивания" ферромагнитных материалов типа железа показана на рис. 10.3.
Соответствующее значение \[ B_{\textit{НАС}} \] называют магнитной индукцией насыщения. Когда напряженность внешнего магнитного поля \[ H \] уменьшается и спадает до нуля, ферромагнитный материал остается еще намагниченным в прежнем направлении. Величину \[ B_O \] называют остаточной магнитной индукцией. Под действием нарастающего в противоположном направлении внешнего магнитного поля \[ H \] величина прежней намагниченности уменьшается до нуля, а дальше ферромагнетик перемагничивается уже в новом направлении. Напряженность внешнего магнитного поля \[ H_K \] , необходимую для того, чтобы размагнитить ферромагнетик, называют коэрцитивной силой. При циклическом изменении внешнего магнитного поля \[ H \] кривая перемагничивания ферромагнетика имеет вид симметричной относительно начала координат замкнутой линии, которую называют петлей гистерезиса. Пунктирной линией на рис. 10.3 показана кривая гистерезиса в случае, когда амплитуда переменного внешнего магнитного поля \[ H \] не достаточна для достижения технического насыщения ферромагнетика.
Чем меньше коэрцитивная сила, тем меньше и площадь петли гистерезиса. А последняя пропорциональна работе, которую надо выполнить для магнитной переориентации доменов. Материалы с малой коэрцитивной силой и соответственно с малой площадью петли гистерезиса называют магнитомягкими или просто "мягкими". Ферромагнитные материалы с большой коэрцитивной силой называют магнитожесткими, магнитотвердыми или просто "твердыми" (когда из контекста ясно, о какой "мягкости" или "твердости" идет речь).
Магнитомягкие материалы применяют в трансформаторах, обмотках двигателей и т.д. – там, где переориентация доменов происходит все время и где надо минимизировать потери энергии на перемагничивание. Магнитотвердые материалы применяют для изготовления постоянных магнитов, когда надо как можно дольше сохранять установленную ориентацию доменов.
Магнитная проницаемость ферромагнитных материалов и другие их свойства зависят не только от их состава, но и от их микро- и наноструктуры, от технологии обработки, от температуры. Кривая гистерезиса зависит еще и от частоты перемагничивания и от характера изменения внешнего магнитного поля.