Опубликован: 23.05.2008 | Доступ: свободный | Студентов: 1570 / 396 | Оценка: 4.80 / 4.10 | Длительность: 15:29:00
Специальности: Программист
Лекция 8:

Синхронизация времени в распределенном имитационном моделировании

< Лекция 7 || Лекция 8: 123 || Лекция 9 >

Использование lookahead (Забегания вперёд)

Для консервативных алгоритмов синхронизации характерной особенностью является использование предварительного просмотра (lookahead).

Предположим, что некоторый логический процесс имеет локальное время с отметкой T. Процесс может гарантировать, что любое будущее сообщение, отосланное им, будет иметь временную метку, превосходящую временную метку пришедшего позднее сообщения, на величину, равную T+L. В этом случае говорят, что процесс имеет предварительный просмотр величиной, равной L. Предварительный просмотр используют для того, чтобы вычислить временную метку нулевого сообщения. Величина предварительного просмотра указывает на то, что на протяжении некоторого временного отрезка L исходящих сообщений не будет.

Обсуждаемый алгоритм допускает множество модификаций, таких как, например, подсчёт lookahead по отдельности для различных исходящих дуг, что приводит к значительному уменьшению простоя логических процессов. К отрицательным характеристикам этого алгоритма можно отнести тот факт, что если процессы сильно связаны, то все логические процессы будут продвигаться лишь на очень малые промежутки времени. Таким образом, моделирование по своей сути будет последовательным. Недостатком алгоритма является и то, что при небольших значениях lookahead возможна ситуация циклического ожидания нескольких LP с небольшими продвижениями локальных часов. В некоторых системах возможно, а зачастую и необходимо, использование нулевого предварительного просмотра (zero lookahead), однако обсуждаемый выше алгоритм не допускает нулевых предварительных просмотров.

Использование дополнительной информации о временной метке следующего события

Рассмотрим подробнее недостатки алгоритмы с нулевыми сообщениями. Итак, одним из недостатков алгоритма является тот факт, что он может сгенерировать слишком большое количество нулевых сообщений.

Допустим, что мы имеем два логических процесса LP. Предположим, что оба они заблокированы. Каждый из них достиг временной отметки, равной 100 ( TlocLP1 = 100 ) и значение n. Пусть следующее запланированное событие имеет временную метку, равную 200. Алгоритм с нулевыми сообщениями будет действовать следующим образом: сообщения будут посланы процессами в моменты времени, равные 101, 102, 103 и т.д. Это будет продолжаться до тех пор, пока процессы не достигнут временной отметки, равной 200. После этого событие с временной меткой 200 ( ei, 200), будет выполнено. Т.о., мы видим, что было послано и обработано 100 нулевых сообщений до того момента, когда пришёл черёд ненулевого необработанного события. Из примера рис. 8.6 видно, что алгоритм с нулевыми сообщениями в этом случае неэффективен. Ситуация ещё более изменится к худшему, если мы будем работать с большим количеством процессов.

Рассмотрим пример, который проиллюстрирован на рис. 8.6.

На рисунке видно, что взаимодействуют 3 логических процесса. Нулевые сообщения запланированы на 5.0, 5.5, 6.0 и т.д., они отсылаются через каждые 0.5 минут единиц модельного времени. Нулевых сообщений гораздо больше, нежели в предыдущем примере. Итак, если lookahead мало, то это приводит c к большому количеству нулевых сообщений.

Проблема заключается в том, что мы используем только текущее модельное время и значение предварительного просмотра (lookahead) для вычисления минимальной временной отметки будущих событий процесса. Ключом к усовершенствованию алгоритма является информация о значении временной метки следующего необработанного события. Если бы все логические процессы, участвующие в моделировании, владели этой информацией, они могли бы сразу перевести локальные часы на отметку 200 ( TlocLP1 = 200 ). Таким образом, мы можем избавиться от описанного выше недостатка алгоритма с нулевыми сообщениями.

  Слишком много нулевых сообщений (lookahead = 0.5)

Рис. 8.7. Слишком много нулевых сообщений (lookahead = 0.5)

Многие усовершенствованные алгоритмы используют изложенную только что идею.

Другая проблема заключается в следующем: пусть каждый процесс представляет собой вершину полного графа (каждый процесс может послать сообщение каждому из остальных процессов). При обработке каждого нулевого события каждый процесс выполняет широковещательную рассылку сообщений всем другим процессам. Одним словом, количество генерируемых процессами нулевых событий будет чрезвычайно большим.

Chandy и Misra решили эту проблему следующим образом: вычисления продолжаются до возникновения тупика. Далее тупик обнаруживают и устраняют. Тупик может быть устранён по той причине, что сообщение с минимальным временем безопасно и, следовательно, может быть обработано.

Альтернативой этому решению является вычисление нижней границы с целью увеличить множество безопасных сообщений.

Оптимистическое управление временем

В отличие от консервативных алгоритмов, не допускающих нарушения ограничения локальной каузальности, оптимистические методы не следят за этим ограничением. Однако этот подход гарантирует выявление нарушения каузальности и его устранение. Оптимистический метод имеет два важных преимущества по сравнению с консервативным. Во-первых, ему свойственен более высокий уровень параллелизма. Действительно, если два события могут влиять друг на друга, но алгоритм таков, что на самом деле этого нет, то оптимистический программный механизм позволяет обрабатывать события параллельно в отличие от консервативного. Консервативный метод в этом случае всё равно требует последовательного выполнения этих двух событий. Во-вторых, консервативный механизм обычно требует дополнительной информации, например, расстояние между объектами. Это необходимо для определения безопасного события процесса. Оптимистические алгоритмы, использующие такую информацию, тоже выполняются быстрее, но влияние этой информации на корректность выполнения гораздо меньше. Оптимистический алгоритм, таким образом, более прозрачен при разработке математического программного обеспечения, чем консервативный, разработка программного обеспечения становится проще. С другой стороны, для оптимистического подхода могут потребоваться дополнительные вычисления, что снижает эффективность его применения.

В оптимистическом алгоритме все события, заппанированные на t1=10, t2=11 и t3=12 выполняются

Рис. 8.8. В оптимистическом алгоритме все события, заппанированные на t1=10, t2=11 и t3=12 выполняются

Для оптимистических алгоритмов характерно:

  • Логические процессы обмениваются сообщениями с временными метками.
  • Топология процессов меняется, т.е. возможно появление новых процессов.
  • Сообщения, передаваемые по одной линии связи, не должны быть упорядочены по времени.
  • Сеть должна с достаточной надёжностью передавать сообщения, но не отвечает за порядок передачи.

Наиболее известный оптимистический алгоритм – алгоритм, разработанный Джефферсоном. Алгоритм известен под названием Time Warp. Когда логический процесс получает событие, имеющее временную отметку меньшую, чем уже обработанные события, он выполняет откат и обрабатывает эти события повторно в хронологическом порядке. Откатываясь назад, процесс восстанавливает состояние, которое было до обработки событий (используются контрольные точки) и отказывается от сообщений, отправленных "откаченными" событиями. Для отказа от этих сообщений разработан изящный механизм антисообщений.

Антисообщение – это копия ранее отосланного сообщения. Если антисообщение и соответствующее ему сообщение (позитивное) хранятся в одной и той же очереди, то они взаимно уничтожаются. Чтобы изъять сообщение, процесс должен отправить соответствующее антисообщение. Если соответствующее позитивное сообщение уже обработано, то процесс-получатель откатывается назад. При этом могут появиться дополнительные антисообщения. При использовании этой рекурсивной процедуры все ошибочные сообщения будут уничтожены.

Для того чтобы оптимистический алгоритм стал надёжным механизмом синхронизации, необходимо решить 2 проблемы:

  • Некоторые действия процесса, например, операции ввода-вывода, нельзя "откатить".
  • Обсуждаемый алгоритм требует большого количества памяти (для восстановления состояний процессов в контрольных точках, которые создаются независимо от того, произойдёт откат или нет), требуется особый механизм, чтобы освободить эту память.

Обе эти проблемы решаются с помощью глобального виртуального времени (GVT). GVT –это нижняя граница временной отметки любого будущего отката. GVT вычисляется с учётом откатов, вызванных сообщениями, поступивших "в прошлом". Таким образом, наименьшая временная метка среди необработанных и частично обработанных сообщений и есть GVT. После того, как значение GVT вычислено, фиксируются операции ввода вывода, выполненные в модельное время, превышающее GVT, а память восстанавливается (за исключением одного состояния для каждого из логических процессов).

Вычисление GVT очень похоже на вычисление LBTS в консервативных алгоритмах. Это происходит потому, что откаты вызваны сообщениями или антисообщениями в прошлом логического процесса. Следовательно, GVT – это нижняя граница временной метки будущих сообщений (или антисообщений), которые могут быть получены позже.

Существует несколько алгоритмов для вычисления GVT (LBTS). В асинхронных алгоритмах вычисление GVT выполняется в фоновом режиме во время имитационного прогона. При этом возникает трудность, которая заключается в том, что о локальном минимуме процессы должны извещать в разные моменты времени. Вторая проблема связана с учётом сообщений, которые были отосланы, но ещё не получены. Некоторые авторы (Маттерн(Mattern)) предлагают использовать последовательные отрезки вычислений и счётчики сообщений, эффективно решающие описанные выше проблемы.

Для чистых Time Warp систем характерно чрезмерное "забегание" вперёд некоторых процессов. Это приводит к весьма серьёзной трате памяти и слишком длинным откатам. Большинство оптимистических алгоритмов пытаются ограничить это "забегание". С этой целью вводятся "перемещаемые" в модельном времени окна. Окно определяется как [GVT, GVT+W], где W – это параметр, задаваемый пользователем. Процесс обрабатывает только те события, временные метки которых находятся в данном временном интервале. Существуют более сложные модификации алгоритма синхронизации с перемещаемым окном: для параметра W задаётся алгоритм его пересчёта.

Другой подход заключается в том, что отправка сообщения откладывается до того момента, когда появляется гарантия, что она не состоится позже отката обратно. Другими словами, GVT продвигается до модельного времени, на которое было запланировано событие. Таким образом, исключается необходимость в антисообщениях и исключаются каскадированные откаты (откаты, вызывающие новые дополнительные откаты).

Существует подход, использующий "просмотр назад" (lookback). "Просмотр назад" – это нечто похожее на "предварительный просмотр" в консервативных протоколах синхронизации. Он позволяет избавиться от анти-сообщений.

Кроме того, существует техника прямой отмены, которая иногда используется для срочной отмены некорректных сообщений (Fujimoto).

Другой проблемой, связанной с реализацией оптимистического алгоритма, является большие затраты памяти на хранение исторической информации. Рассмотрим некоторые решения проблемы памяти более подробно:

  • Выполнить откат с той целью, чтобы освободить память (Jefferson).
  • Выполнять сохранение текущего состояния реже, чем сохранение после каждого события. Периоды сохранения можно указывать в начале моделирования или пересчитывать после каждого сохранённого состояния.
  • Выполнять освобождение памяти, занятой векторами состояний, даже в том случае, если их временная метка больше, чем GVT.

Ранние подходы к управлению выполнением Time Warp алгоритма с целью оптимизации основывались на параметрах, задаваемых пользователем. Позже применялись адаптивные подходы, которые следили за выполнением алгоритма и выполняли регулировку этого алгоритма с целью повышения его скорости выполнения.

Выбор алгоритма для реализации системы моделирования

Алгоритмы синхронизации – это достаточно хорошо изученная область дискретного распределённого моделирования. Тем не менее, не существует общего мнения на тот счёт, какой из алгоритмов синхронизации лучше: консервативный или оптимистический. Действительно, выбор алгоритма зависит от конкретного приложения:

  • Если приложение имеет хорошие характеристики для использования lookahead (заглядывания вперёд, предварительного просмотра) и вычисление этого lookahead в конечном счёте незначительно увеличивает накладные расходы на разработку приложения, то рекомендуется использовать консервативный алгоритм.
  • С другой стороны, в некоторых приложениях оптимистический алгоритм будет выполняться скорее, но к его недостаткам можно отнести тот факт, что реализация оптимистического алгоритма сложна и требует большого количества памяти.
< Лекция 7 || Лекция 8: 123 || Лекция 9 >
Дмитрий Полянский
Дмитрий Полянский
Ольга Космодемьянская
Ольга Космодемьянская

Я прошла курс "Распределенные системы и алгоритмы". Сдала экзамен экстерном и получила диплом. Вопрос: можно ли после завершения теста посмотреть все вопросы, которые были на экзамене и все варианты ответов? Мне это необходимо для отчета преподавателю в моем ВУЗе. Заранее спасибо!