Санкт-Петербургский государственный университет
Опубликован: 12.07.2013 | Доступ: свободный | Студентов: 246 / 38 | Длительность: 09:36:00
Специальности: Программист
Лекция 3:

Разработка мультиагентных систем

MAC для управления безопасностью автомобиля. Примером инновационного продукта, обеспечивающего комплексную безопасность автомобиля на дороге может служить информационно-диагностическая подсистема "Автоматизированная помощь на дороге" (АПД) для on-line обслуживания водителей [ 2.11 ] .

Подсистема предназначена для постоянного текущего мониторинга устройств и механизмов автомобиля клиента и базируется на современных достижениях в области сбора, передачи, и автоматизированного анализа сигналов, обработки сигналов в режиме on-line с использованием современных датчиков и контроллеров, а также контроля всей системы на базе мультиагентного подхода. Пользователем может стать любой человек, который пожелает установить систему АПД при покупке нового автомобиля распространенных марок Ford, Opel, Chevrolet, KIA, BMW и др.

Эксплуатация автомобиля, не оборудованного системой АПД

Рис. 5.6. Эксплуатация автомобиля, не оборудованного системой АПД

Главным назначением АПД является повышение безопасности клиента. Во время движения автомобиля могут возникать нештатные ситуации, связанные с состоянием агрегатов автомобиля, дорожной обстановкой, состоянием покрытия, погодой и т.д. При этом водитель может не подозревать о надвигающейся аварийной ситуации, связанной с некорректной работой двигателя, тормозной системы, рулевого управления. Система АПД обязана минимизировать последствия критических поломок, так как она призвана при первых симптомах неисправности, отправить сведения о них в дилерский центр, оператор которого свяжется с клиентом и сообщит о возможных последствиях и путях их предотвращения. Рассмотрим вариант, когда автомобиль не оборудован системой АПД (рис.5.6.) Клиент эксплуатирует автомобиль определённое количество времени, проводит регламентированные работы (ТО) в официальном автосервисе. В случае инцидента на дороге (отказ двигателя, съезд с полотна и переворот вследствие прокола колеса, наезд на препятствие, столкновение с другим транспортным средством) водитель обязан вызвать сотрудников ГИББД, страхового агента и т.д. Но если водитель серьёзно пострадал, то он не может определить своё состояние, местоположение, вызвать себе скорую помощь и соответствующие службы. И если ДТП произошло на просёлочной дороге, то шансы быстро получить необходимую помощь резко уменьшаются.

Эксплуатация автомобиля, оборудованного системой АПД

увеличить изображение
Рис. 5.7. Эксплуатация автомобиля, оборудованного системой АПД

Если же автомобиль оснащен системой оказания комплексной услуги АПД (рис. 5.7), то при возникновении малейшей неисправности (например, нештатная вибрация кузова, рулевого управления, утечка масла или бензина, критический износ тормозных колодок и пр.) система отображает возникшую коллизию на панели приборов. Бортовой компьютер отсылает код неисправности оператору в дилерский центр или станцию технического обслуживания. Оператор немедленно связывается с дежурным мастером-консультантом, а тот, в свою очередь, удаленно тестирует неисправность, связывается с клиентом и даёт рекомендации по поводу дальнейшего эксплуатирования автомобиля. Если клиент попадает в ДТП, то компьютер автоматически отсылает информацию о том, что сработали ремни и подушки безопасности. Оператор сразу же пытается связаться с клиентом по сотовому телефону. Если клиент не снимает трубку, то оператор вызывает скорую помощь на место, которое было определено с помощью GPS-передатчика на автомобиле.

Таким образом, система АПД позволяет повысить безопасность благодаря своевременному выявлению проблем, а также вызову помощи тогда, когда клиент в ней нуждается. Помимо всего прочего, система АПД может иметь ряд других полезных функций. Так например, если клиент оставил ключи от автомобиля дома, но очень спешит, то он может позвонить оператору, назвать свой уникальный ID и пароль. Оператор открывает и заводит автомобиль. Также оператор может закрыть автомобиль.

Система АПД может выполнять также функцию охранной сигнализации: если злоумышленники угнали автомобиль, клиент связывается с оператором, а тот, в свою очередь, связывается с правоохранительными органами и сообщает им расположение автомобиля.

Архитектура системы АПД может состоять состоит из трёх базовых модулей (рис.5.8):

  • модуль диагностики автомобиля;
  • программный модуль коммуникатора;
  • АРМ оператора у дилера.
Архитектура системы АПД

Рис. 5.8. Архитектура системы АПД

Модуль диагностики автомобиля включает в себя систему самодиагностики и блоки ECU (Electronic Control Unit). "Самодиагностика (иногда называемая бортовой диагностикой) – это система, которая постоянно держит под наблюдением сигналы различных датчиков и исполнительных механизмов системы управления двигателем (СУД). Эти сигналы сравниваются с их контрольными значениями, которые хранятся в памяти бортового компьютера.

Набор таких контрольных значений может быть разным в разных автомобилях и их моделях. Он может в себя включать верхние и нижние допустимые границы контролируемых параметров, допустимое число ошибочных сигналов в единицу времени, неправдоподобные сигналы, сигналы, выходящие за допустимые пределы и др. При выходе сигнала за пределы контрольных значений блок электронного управления квалифицирует это состояние как неисправность, формирует и помещает в память соответствующий код.

Ранние конструкции систем диагностики были способны формировать и хранить лишь небольшое число кодов. Современные системы в состоянии генерировать и хранить 100 и более кодов и способны ещё увеличить это количество по мере того, как ПО бортовых компьютеров, основанное на технологии интеллектуальных агентов "научится" выделять новые нештатные, сбойные и аварийные ситуации.

ECU – основной элемент электронной системы управления, реализующий алгоритм управления путём преобразования электрических сигналов датчиков в управляющие воздействия на исполнительные устройства. Электронный блок управления (ЭБУ) двигателем получает сигналы от разных датчиков и обрабатывает их по определённой схеме. После обработки данных принимает решение о том, как управлять работой различных систем двигателя, меняя подачу топлива, выставляя зажигание, а также диагностирует все системы управления автомобилем и уведомляет о неисправностях.

Связь внешнего устройства (в данном случае коммуникатора) с электронным блоком управления осуществляется благодаря CAN-шине. CAN (Contoller Area Network) является сетевым интерфейсом передачи данных на скорости до 1 Мбит/сек. Автомобиль связывается с коммуникатором посредством CAN-шины и переходника CAN-bus-USB. На смартфоне водителя установливается ПО, которое способно выводить информацию о работе систем автомобиля на дисплей, а также отправлять их в Интернет. В случае, если ошибок никаких не возникает, то сведения о работе автомобиля остаются в телефоне. В случае, если возникает какая-либо критическая неисправность либо срабатывают датчики ремней и подушки безопасности), то информация о местоположении автомобиля, а также информация с кодом неисправности отсылается на АРМ оператора соответствующего Call-центра.

В соответствии с такой архитектурой, алгоритм сбора, анализа, и выработки рекомендаций для пользователя будет основан на мультиагентном подходе. Суть мультиагентного подхода в этом случае заключается в том, что гораздо эффективнее внедрить несколько интеллектуальных агентов, которые будут отвечать за свой небольшой сегмент, чем использовать одно электронное устройство с заданной жестко программой функционирования, отвечающее за всю диагностику (в настоящее время вся информация с датчиков поступает в "головной центр" сбора информации ECU).

Каждый агент содержит базу знаний, которая распространяется только на один элемент автомобиля. Например, первый агент отвечает за работу включения и выключения атвомобиля, другой агент отслеживает работу тормозной системы, третий агент контролирует работу двигателя, четвёртый агент следит за покрытием дороги, и т.д.

Рассмотрим два алгоритма работы системы на базе мультиагентного подхода и опишем типичную схему принятия решения.

  • На улице зима, человек садится в автомобиль, прогревает его (режим контролирует 1-й агент) и выезжает на шоссе. Во время движения из-за снега и наледи постоянно меняется рельеф дорожного покрытия, и человек не всегда успевает реагировать на эти изменения. Поэтому агент, который отвечает за анализ состояния дорожного покрытия (4-й агент), постоянно общается с агентами, которые отвечают за работу двигателя (3-й агент) и тормозной системы (2-й агент). Если автомобиль выезжает на лёд, то четвертый агент сообщает об этом первому и второому. Второй агент приводит тормозную систему в состояние повышенный готовности (усиливает давление в тормозной системе), а первый агент ограничивает обороты и плавность работы двигателя. Тем самым уменьшается риск заноса или, другими словами, повышается уровень безопасности.
  • Автомобиль двигается по дороге. Соответствующие интеллектуальные агенты следят за состоянием элементов активной безопасности (рис.5.9). Первый агент отвечает за состояние ремней безопасности, второй агент следит за состоянием подушек безопасности, третий отслеживает состояние тормозной системы, четвёртый передаёт данные на коммуникатор, пятый отправляет информацию на АРМ оператора дилерского центра, шестой агент отвечает за информацию поступающих с датчиков парковки (патронников), седьмой агент следит за работой климатической установки. Автомобиль подъезжает к пешеходному переходу, но водитель задумался, и не успевает своевременно плавно остановиться и резко нажимает на педаль тормоза. Агенты анализирует изменившуюся информацию (автомобиль ехал с постоянной скоростью, но резко остановился), общаются между собой: шестой агент сообщает, что контакта не было, второй сообщает, что подушки безопасности не раскрылись, первый агент говорит о том, что преднатяжители ремней безопасности сработали.
Схема анализа информации, полученной агентами от датчиков

Рис. 5.9. Схема анализа информации, полученной агентами от датчиков

Исходя из этих данных, они решают не отправлять данные на АРМ оператора дилерского центра, но занести информацию о характере торможения в память (для того, чтобы при возникновении неполадки в будущем, можно было легко вычислить причину её возникновения). Автомобиль продолжает движение и совершает наезд на впереди стоящий автомобиль. И тут уже начинается рассмотрение как минимум двух ситуаций:

  • Агенты сообщают, что патронники зафиксировали критическое приближение (удар), преднатяжители ремней сработали, но температура в салоне не изменилась (лобовое стекло цело) и подушки безопасности не открылись, т.е. удар произошёл на небольшой скорости. Как вывод, агенты сообщают эту информацию на АРМ оператора дилерского центра, и он связывается с клиентом.
  • Агенты сообщают о срабатывании всех систем активной безопасности: преднатяжители сработали, зафиксировано критическое сближение (удар), подушки безопасности раскрылись, температура в салоне изменилась – т.е. произошёл один из худших вариантов развития для человека. Агенты автомобиля сообщают информацию о случившемся агенту, который отвечает за коммуникатор, далее этот агент передаёт информацию о происшествии и местоположении автомобиля на АРМ оператора дилерского центра. Оператор быстро обрабатывает всю информацию, пытается связать с клиентом и в случае необходимости вызывает скорую помощь на место происшествия.

Таким образом, видно, что агенты общаются между собой и при анализе поступающей информации принимают решение о реализации необходимых процедур.

Устройство управления самодиагностикой состоит из нескольких выделенных блоков: для двигателя – ECU (Engine Control Unit) или ECM (Engine Control Module); для антиблокировочной системы тормозов – ABS (Antiblocking System), для подушек безопасности – ABSRS (Air Bag Supplemental Restraint System), для автоматической коробки передач – A/T (Electronic Automatic Transaxles) и др.

При получении сигнала о возникновении неполадки система диагностики обязана ответить унифицировано:

  • во-первых, классифицировать неисправность по номеру (коду ошибки) и запомнить этот код в долговременной памяти;
  • во-вторых, предпринять действия по минимизации ущерба, предусмотренные на этот случай управляющей программой.

После этого сохранённые в памяти коды ошибок считываются специальным прибором (сканером), или вручную, при помощи определённой процедуры, которая вводит ECU в режим индикации кодов самодиагностики.

MAC для управления группой БПЛА. Еще одним перспективным направлением применения MAC являются системы беспилотных летательных аппаратов. В современном мире "беспилотные летательные аппараты" (англ. Unmanned Aerial Vehicles, далее БПЛА) приобретают все большую популярность в качестве легких и недорогих инструментов для исследований территорий, разведки и воздушных съемок. В основной массе современная беспилотная техника не обладает автономностью (обычно дистанционно управляется оператором со специального пульта). Есть успешные разработки одиночных БПЛА, которые под управлением автопилота способны в автономном режиме облететь территорию по заданному маршруту, собирая ту или иную информацию или выполняя другие задания. Анализ большинства задач решаемых с использованием одиночных аппаратов показывает, что они могут более эффективно решаться группой, так как у группы эффективно взаимодействующих легких и маленьких самолетов появляются дополнительные полезные свойства [ 3.6 ] [ 3.7 ] [ 3.8 ] . В следующей главе будет рассмотрен один из возможных вариантов реализации MAC для управления группой БПЛА.

Николай Корнеев
Николай Корнеев

В самостоятельной работе №1 нет примера lab01 файла labAtom32.rar. Ссылка которая есть в презентации

www.math.spbu.ru/user/gran/Atom32/lab01

не работает?