Электронные книги: Основы дискретной математики
21 августа 2007
М.И. Дехтярь
Электронная книга
(fb2 - 2.8 Мб, txt - 213.8 Кб, html - 2.5 Мб, epub - 2.7 Мб)
Это начальный курс по дискретным структурам. Лекции курса содержат все необходимые для изучения основного материала предварительные сведения о множествах, комбинаторике и методе математической индукции.
Рассмотрен самый простой и важный класс дискретных функций - булевы функции: их различные представления, связь с логикой высказываний, основные логические тождества ("законы логики"), дизъюнктивные и конъюнктивные нормальные формы и многочлены Жегалкина, полные системы функций (теорема Поста), задача выводимости для Хорновских формул. Даны краткое введение в логику предикатов и устанавливаются связи между ней и реляционными базами данных, введение в теорию графов, включающее представления графов, граф достижимости, компоненты сильной связности и базы ориентированного графа, деревья, их обходы, связь деревьев и формул (выражений), три классические задачи теории графов: построение минимального остова, обход графа в глубину (задачу о лабиринте) и задачу о кратчайших путях. Решение большинства рассматриваемых в курсе проблем доведено до уровня алгоритмических процедур и проиллюстрировано на примерах. Каждая лекция завершается разделом с задачами и упражнениями, позволяющими закрепить пройденный материал.
Рассмотрен самый простой и важный класс дискретных функций - булевы функции: их различные представления, связь с логикой высказываний, основные логические тождества ("законы логики"), дизъюнктивные и конъюнктивные нормальные формы и многочлены Жегалкина, полные системы функций (теорема Поста), задача выводимости для Хорновских формул. Даны краткое введение в логику предикатов и устанавливаются связи между ней и реляционными базами данных, введение в теорию графов, включающее представления графов, граф достижимости, компоненты сильной связности и базы ориентированного графа, деревья, их обходы, связь деревьев и формул (выражений), три классические задачи теории графов: построение минимального остова, обход графа в глубину (задачу о лабиринте) и задачу о кратчайших путях. Решение большинства рассматриваемых в курсе проблем доведено до уровня алгоритмических процедур и проиллюстрировано на примерах. Каждая лекция завершается разделом с задачами и упражнениями, позволяющими закрепить пройденный материал.
Вам нравится? Нравится 1 студенту
| Учебный курс
21.08.2007
Уровень: специалист | Доступ: свободно | ВУЗ: Тверской государственный университет | Студентов: 3255 / 339 | Оценка выпускников: 4.08 / 3.92
ISBN: 978-5-9556-0110-6
Это начальный курс по дискретным структурам. Лекции курса содержат все необходимые для изучения основного материала предварительные сведения о множествах, комбинаторике и методе математической…
Это начальный курс по дискретным структурам. Лекции курса содержат все необходимые для изучения основного материала предварительные сведения о множествах, комбинаторике и методе математической…
|