DVD: Алгоритмы и модели вычислений
Фуругян М.Г.
    
                DVD | 1 диск | mp4 | 3 августа 2009    
    
                Рассматриваются некоторые теоретические проблемы, возникающие при разработке математического обеспечения вычислительных систем. Изучаются такие фундаментальные проблемы, как теория потоков в сетях, анализ сложности алгоритмов и сложности дискретных задач. Рассмотрены методы решения переборных задач. Даны алгоритмы решения некоторых задач на параллельной машине с произвольным доступом.
Приведены и исследованы два алгоритма решения задачи о максимальном потоке (алгоритмы Форда-Фалкерсона и Карзанова). В качестве приложения потоковых алгоритмов дан алгоритм планирования вычислений в многопроцессорных вычислительных системах. Исследован алгоритм сортировки с помощью кучи. Рассматривая в качестве модели процесса вычислений детерминированную машину Тьюринга, введены и исследованы понятия рекурсивных и рекурсивно перечислимых языков, сложностных классов языков и задач (P, NP, co-NP, NPC, NPH и др.), изучена их взаимосвязь. Рассмотрены методы доказательства NP-полноты. Даны некоторые методы решения переборных задач (метод “ветвей и границ”, рандомизированные алгоритмы, приближенные алгоритмы и др.) и показана возможность применения теории NP-полноты к разработке алгоритмов решения этих задач. Приведены и исследованы параллельные алгоритмы решения некоторых задач, связанных с работой со списками и деревьями. Для каждого из приведенных алгоритмов дается обоснование и определяется вычислительная сложность.
    
    Приведены и исследованы два алгоритма решения задачи о максимальном потоке (алгоритмы Форда-Фалкерсона и Карзанова). В качестве приложения потоковых алгоритмов дан алгоритм планирования вычислений в многопроцессорных вычислительных системах. Исследован алгоритм сортировки с помощью кучи. Рассматривая в качестве модели процесса вычислений детерминированную машину Тьюринга, введены и исследованы понятия рекурсивных и рекурсивно перечислимых языков, сложностных классов языков и задач (P, NP, co-NP, NPC, NPH и др.), изучена их взаимосвязь. Рассмотрены методы доказательства NP-полноты. Даны некоторые методы решения переборных задач (метод “ветвей и границ”, рандомизированные алгоритмы, приближенные алгоритмы и др.) и показана возможность применения теории NP-полноты к разработке алгоритмов решения этих задач. Приведены и исследованы параллельные алгоритмы решения некоторых задач, связанных с работой со списками и деревьями. Для каждого из приведенных алгоритмов дается обоснование и определяется вычислительная сложность.
Видеокурсы
| 
                    3 августа 2009                   
                Фуругян М.Г.               
                              Видеокурс | 768p - 3.4 Гб                             
                Рассматриваются некоторые теоретические проблемы, возникающие при разработке математического обеспечения вычислительных систем. Изучаются такие фундаментальные проблемы, как теория потоков в сетях, анализ сложности алгоритмов и сложности дискретных…               | 
Учебный курс
                    03.08.2009                  
                                                    
                              Уровень: специалист | Доступ: свободно | Студентов: 1587 / 64 | Оценка выпускников: 5.00 / 4.80                            
                                                              
                Рассматриваются некоторые теоретические проблемы, возникающие при разработке математического обеспечения вычислительных систем. Изучаются такие фундаментальные проблемы, как теория потоков в сетях,…              
                                                            
                                             
                             
