Information

Created: 19.08.2013 | Level: for all | Access: paid | University: Новосибирский Государственный Университет
Introduction to multimedia applications development Курс предусматривает ознакомление с основными задачами, моделями и методами создания мультимедийных приложений с акцентом на задачи компьютерного зрения и машинного обучения.
Лекционная часть курса расширяет кругозор слушателей в части алгоритмов решения ряда ключевых задач предметной области. Данная версия курса является вводной. Она предусматривает ознакомление с основными задачами, моделями и методами создания мультимедийных приложений с акцентом на задачи компьютерного зрения и машинного обучения. Отличительной особенностью курса является ориентация на практическое применение. Для этого авторами подготовлены подробные текстовые описания не только лекционной части, но и лабораторных работ, иллюстрирующих применение библиотек OpenCV и IPP для решения задач компьютерного зрения. Материалы лабораторного практикума включают коды программ, процесс пошаговой разработки которых описан в методических указаниях.
Prerequisites: Предполагается, что слушатели курса владеют базовыми навыками программирования (основы алгоритмизации, алгоритмы и структуры данных, C/C++), а также знаниями математики в объеме первых двух курсов факультетов естественнонаучного профиля.

План занятий

LessonTitle <<Date
-
Lecture 1
35 minutes
Основные цветовые модели, представление изображения, базовые операции над изображениями
В лекции дается определение компьютерного зрения, рассматриваются области его применения. Рассматриваются вопросы формирования изображений. Приведена классификация изображений, а также описаны основные методы обработки изображений. Приводится характеристика основных цветовых пространств.
Contents
    -
    Тест 1
    36 minutes
    -
    Lecture 2
    1 hour 4 minutes
    Введение в машинное обучение
    В лекции рассматриваются основные задачи машинного обучения, приведены основные методы решения этих задач.
    Contents
      -
      Тест 2
      27 minutes
      -
      Lecture 3
      1 hour 6 minutes
      Детекторы и дескрипторы ключевых точек. Алгоритмы классификации изображений. Задача детектирования объектов на изображениях и методы её решения
      В лекции приводятся описание детекторов особых точек, дескрипторов особых точек, методах классификации изображений, методов детектирования объектов.
      Contents
        -
        Тест 3
        36 minutes
        -
        Lecture 4
        34 minutes
        Начало работы с библиотекой OpenCV
        В лекции приводятся: обзор библиотеки OpenCV, описание программ на C/C++ и Python.
        Contents
          -
          Тест 4
          18 minutes
          -
          Lecture 5
          17 minutes
          Введение в библиотеку IPP
          В лекции приводится подробное описание структуры библиотеки IPP, модели ее использования. Описываются основные типы данных и функций, даны примеры работы с ними. Приведен пример создания приложения в среде MICROSOFT VISUAL STUDIO 2010.
          Contents
            -
            Тест 5
            24 minutes
            -
            Самостоятельная работа 1
            1 hour 52 minutes
            Сборка и установка библиотеки OpenCV. Использование библиотеки в среде Microsoft Visual Studio
            В работе предлагается описание возможных способов сборки и установки библиотеки OpenCV. Приводится последовательность действий, которые необходимо выполнить для настройки среды Microsoft Visual Studio при разработке приложений с использованием функций библиотеки. Далее рассматриваются некоторые элементарные операции обработки изображений, решается задача выделения контуров объекта и разрабатывается приложение с целью освоения этих элементарных операций. Описываются некоторые операции работы с видеоданными, рассматривается задача видеодетектирования лиц с использованием классификатора Хаара. Разрабатывается приложение, которое демонстрирует применение некоторых функций работы с видео, а также реализации указанного детектора, входящей в состав библиотеки OpenCV.
            Contents
              -
              Самостоятельная работа 2
              1 hour 45 minutes
              Базовые операции обработки изображений
              В работе предлагается описание базовых операций обработки изображений. Приводятся прототипы функций библиотеки OpenCV, содержащих реализацию рассматриваемых функций с описанием назначения входных параметров. Предлагаются примеры программ, демонстрирующие использование каждой функции. Проводится анализ результатов запуска этих программ на некоторых тестовых изображениях. Разрабатывается структура консольного графического редактора, который обеспечивает возможность применения рассматриваемых операций обработки изображений. Рассматривается структура графического редактора посредством использования Qt-компонент библиотеки OpenCV
              Contents
                -
                Самостоятельная работа 3
                1 hour 35 minutes
                Машинное обучение
                В работе приводится краткое описание некоторых алгоритмов классификации и кластеризации. Приводятся и описываются интерфейсы структур и классов, прототипы функций библиотеки OpenCV, реализующих рассматриваемые алгоритмы. Предлагаются примеры программ, демонстрирующие использование данных классов и функций. Приводятся результаты работы алгоритмов на модельных задачах. Разрабатывается структура приложений, для решения задач классификации и кластеризации.
                Contents
                  -
                  Самостоятельная работа 4
                  1 hour 9 minutes
                  Классификация изображений с использованием bag-of-words методов
                  В работе предлагается описание основных шагов bag-of-words подхода для классификации изображений. Рассматриваются прототипы функций библиотеки OpenCV, необходимые для реализации данных шагов, с описанием назначения входных параметров. Предлагаются примеры подпрограмм, демонстрирующие использование каждой функции. Разрабатывается приложение, содержащее реализацию bag-of-words подхода для классификации двух категорий изображений. Проводится вычислительный эксперимент на наборе данных, применяемом на практике. Рассматривается зависимость результатов применения подхода от используемых параметров.
                  Contents
                    -
                    Самостоятельная работа 5
                    1 hour 6 minutes
                    Сборка и установка Intel® Integrated Performance Primitives. Использование библиотеки в среде Microsoft® Visual Studio
                    В работе предлагается описание процедуры установки библиотеки Intel® IPP в составе пакета Intel® Parallel Studio XE 2013. Приводится последовательность действий, которые необходимо выполнить для настройки среды Microsoft Visual Studio при разработке приложений с использованием функций библиотеки. Далее рассматривается задача медианной фильтрации изображения. Предлагается решение на базе библиотек OpenCV и Intel® IPP. Вводится задача определения прямых линий на изображении, описывается схема решения с использованием преобразования Хафа. Предлагается программные реализации на базе библиотек OpenCV и Intel® IPP.
                    Contents
                      -
                      Самостоятельная работа 6
                      47 minutes
                      Сравнение производительности некоторых алгоритмов в библиотеках OpenCV и IPP
                      Работа построена следующим образом: в начале демонстрируется процесс разработки программного приложения, позволяющего единообразно орга-низовать запуск экспериментов по сравнению производительности. Далее поясняется, как можно выполнить сравнение для алгоритмов медианной фильтрации, эрозии, дилатации, построения гистограммы. Приводятся ре- зультаты первых прикидочных экспериментов, даются рекомендации и задания для самостоятельной проработки.
                      Contents
                        -
                        5 hours
                        -