Как мы отмечали в предыдущей лекции, в манипуляционной составляющей реляционной модели данных определяются два базовых механизма манипулирования реляционными данными – основанная на теории множеств реляционная алгебра и базирующееся на математической логике (точнее, на исчислении предикатов первого порядка) реляционное исчисление. В свою очередь, обычно выделяются два вида реляционного исчисления – исчисление кортежей и исчисление доменов.
Все эти механизмы обладают одним важным свойством: они замкнуты относительно понятия отношения. Это означает, что выражения реляционной алгебры и формулы реляционного исчисления определяются над отношениями реляционных БД и результатом их "вычисления" также являются отношения (конечно, здесь имеются в виду значения-отношения). В результате любое выражение или формула могут интерпретироваться как отношения, что позволяет использовать их в других выражениях или формулах.
Как мы увидим, алгебра и исчисление обладают большой выразительной мощностью: очень сложные запросы к базе данных могут быть выражены с помощью одного выражения реляционной алгебры или одной формулы реляционного исчисления. Именно по этой причине такие механизмы включены в реляционную модель данных. Конкретный язык манипулирования реляционными БД называется реляционно-полным, если любой запрос, формулируемый с помощью одного выражения реляционной алгебры или одной формулы реляционного исчисления, может быть сформулирован с помощью одного оператора этого языка.
Известно (и мы не будем это доказывать), что механизмы реляционной алгебры и реляционного исчисления эквивалентны, т. е. для любого допустимого выражения реляционной алгебры можно построить эквивалентную (т. е. производящую такой же результат) формулу реляционного исчисления и наоборот. Почему же в реляционной модели данных присутствуют оба эти механизма?
Дело в том, что они различаются уровнем процедурности. Выражения реляционной алгебры строятся на основе алгебраических операций (высокого уровня), и подобно тому, как интерпретируются арифметические и логические выражения, выражение реляционной алгебры также имеет процедурную интерпретацию. Другими словами, запрос, представленный на языке реляционной алгебры, может быть вычислен на основе выполнения элементарных алгебраических операций с учетом их приоритетности и возможного наличия скобок. Для формулы реляционного исчисления однозначная вычислительная интерпретация, вообще говоря, отсутствует. Формула только ставит условия, которым должны удовлетворять кортежи результирующего отношения. Поэтому языки реляционного исчисления являются в большей степени непроцедурными, или декларативными.
Поскольку механизмы реляционной алгебры и реляционного исчисления эквивалентны, в конкретной ситуации для проверки степени реляционности некоторого языка БД можно пользоваться любым из этих механизмов.
Заметим, что крайне редко алгебра или исчисление принимается в качестве полной основы какого-либо языка БД. Обычно (например, в случае языка SQL) язык основывается на некоторой смеси алгебраических и логических конструкций. Тем не менее знание алгебраических и логических основ языков баз данных часто применяется на практике.
Для экономии времени и места мы не будем вводить какие-либо строгие синтаксические конструкции, а в основном ограничимся рассмотрением материала на содержательном уровне.
Основная идея реляционной алгебры состоит в том, что коль скоро отношения являются множествами, средства манипулирования отношениями могут базироваться на традиционных теоретико-множественных операциях, дополненных некоторыми специальными операциями, специфичными для реляционных баз данных.
Существует много подходов к определению реляционной алгебры, которые различаются наборами операций и способами их интерпретации, но, в принципе, являются более или менее равносильными. В данном разделе мы опишем немного расширенный начальный вариант алгебры, который был предложен Коддом (будем называть ее " алгеброй Кодда "). В этом варианте набор основных алгебраических операций состоит из восьми операций, которые делятся на два класса – теоретико-множественные операции и специальные реляционные операции. В состав теоретико-множественных операций входят операции:
Специальные реляционные операции включают:
Кроме того, в состав алгебры включается операция присваивания, позволяющая сохранить в базе данных результаты вычисления алгебраических выражений, и операция переименования атрибутов, дающая возможность корректно сформировать заголовок (схему) результирующего отношения.
Если не вдаваться в некоторые тонкости, которые мы рассмотрим в следующих разделах, то почти для всех операций предложенного выше набора имеется очевидная и простая интерпретация.
Поскольку результатом любой реляционной операции (кроме операции присваивания, которая не вырабатывает значения) является некое отношение, можно образовывать реляционные выражения, в которых вместо отношения-операнда некоторой реляционной операции находится вложенное реляционное выражение. В построении реляционного выражения могут участвовать все реляционные операции, кроме операции присваивания. Вычислительная интерпретация реляционного выражения диктуется установленными приоритетами операций:
RENAME >= WHERE = PROJECT >= TIMES = JOIN = INTERSECT = DIVIDE BY >= UNION = MINUS
В другой форме приоритеты операций показаны на рис. 3.1. Вычисление выражения производится слева направо с учетом приоритетов операций и скобок.
Как мы отмечали в предыдущей лекции, каждое значение-отношение характеризуется заголовком (или схемой) и телом (или множеством кортежей). Поэтому, если нам действительно нужна алгебра, операции которой замкнуты относительно понятия отношения, то каждая операция должна производить отношение в полном смысле, т. е. оно должно обладать и телом, и заголовком. Только в этом случае можно будет строить вложенные выражения.
Заголовок отношения представляет собой множество пар <имя-атрибута, имя-домена>. Если посмотреть на общий обзор реляционных операций, приведенный в предыдущем подразделе, то видно, что домены атрибутов результирующего отношения однозначно определяются доменами отношений-операндов. Однако с именами атрибутов результата не всегда все так просто.
Например, представим себе, что у отношений-операндов операции декартова произведения имеются одноименные атрибуты с одинаковыми доменами. Каким был бы заголовок результирующего отношения? Поскольку это множество, в нем не должны содержаться одинаковые элементы. Но и потерять атрибут в результате недопустимо. А это значит, что в таком случае вообще невозможно корректно выполнить операцию декартова произведения.
Аналогичные проблемы могут возникать и в случаях других двуместных операций. Для разрешения проблем в число операций реляционной алгебры вводится операция переименования. Ее следует применять в том случае, когда возникает конфликт именования атрибутов в отношениях-операндах одной реляционной операции. Тогда к одному из операндов сначала применяется операция переименования, а затем основная операция выполняется уже без всяких проблем. Более строго мы определим операцию переименования в следующей лекции, а пока лишь заметим, что результатом этой операции является отношение, совпадающее во всем с отношением-операндом, кроме того, что имя указанного атрибута изменено на заданное имя.
В дальнейшем изложении мы будем предполагать применение операции переименования во всех конфликтных ситуациях.