Курс предназначен для всех представителей "не физико-математических" областей, интересующихся основами высшей математики с целью познать эти основы и использовать их в своей работе или учебе.
Данный курс является вводным курсом в высшую математику. Достаточно строго и формально (на уровне приводимых определений и понятий), но в то же время содержательно и на примерах, рассматриваются основы высшей математики для «не математических» специальностей. Изложение сопровождается большим количеством специально подобранных примеров, поясняющих суть исследуемых понятий и фактов.
Рассматриваются история развития и краткое изложение предмета математики, основные два ее направления (теоретическая и прикладная), а также междисциплинарная, мировоззренческая, воспитательная, культурная и эстетическая роли математики в обществе и познании.
Рассматриваются основные математические величины - числа, их типы, постоянные, переменные и связанные с ними атрибуты, элементы приближенных вычислений.
Рассматриваются основные математические понятия, связанные с определением положения объекта на плоскости и в пространстве, с его ориентацией и направлением, а также их обобщения на пространства большей размерности
Рассматриваются основные математические понятия, связанные с математическими и геометрическими графами, представлением графов, задачами на графах и сетевыми графиками.
Рассматриваются основные математические понятия и факты, связанные с математическими уравнениями, неравенствами, системами уравнений и неравенств, их решением, а также смежные вопросы аналитической геометрии (канонические уравнения и запись областей с помощью неравенств).
рассматриваются основные математические понятия и факты, связанные с предельным переходом и непрерывностью, бесконечно малыми и бесконечно большими, замечательными пределами, неопределенностью.
Рассматриваются основные математические понятия алгебры матриц, определители и их свойства, проблемы собственных чисел и векторов матриц, решение систем алгебраических уравнений, линейное евклидово пространство.