Основы теории нейронных сетей: Информация
Автор: Гульнара Яхъяева
Форма обучения:
дистанционная
Стоимость самостоятельного обучения:
бесплатно
Доступ:
свободный
Документ об окончании:
Вам нравится? Нравится 76 студентам
Уровень:
Специалист
Длительность:
13:49:00
Студентов:
6327
Выпускников:
1607
Качество курса:
4.37 | 4.06
Одним из популярных направлений Artificial Intelligence является теория нейронных сетей (neuron nets). Данный курс является систематизированным вводным курсом в это направление. Нашей целью является познакомить слушателей с основными нейроно-сетевыми парадигмами, показать область применения этого направления.
Людей всегда интересовало их собственное мышление. Это самовопрошение, думанье мозга о себе самом является, возможно, отличительной чертой человека. Нейробиологи и нейроанатомы достигли в этой области значительного прогресса. Усердно изучая структуру и функции нервной системы человека, они многое поняли в «электропроводке» мозга, но мало узнали о его функционировании. В процессе накопления ими знаний выяснилось, что мозг имеет ошеломляющую сложность. Сотни миллиардов нейронов, каждый из которых соединен с сотнями или тысячами других, образуют систему, далеко превосходящую наши самые смелые мечты о суперкомпьютерах. На сегодняшний день существуют две взаимно обогащающие друг друга цели нейронного моделирования: первая – понять функционирование нервной системы человека на уровне физиологии и психологии и вторая – создать вычислительные системы (искусственные нейронные сети), выполняющие функции, сходные с функциями мозга. Именно эта последняя цель и находится в центре внимания данного курса.
В лекциях курса рассматриваются такие классические нейроно-сетевые парадигмы как персептроны, сети Хопфилда и Хэмминга, сети встречного распространения, двунаправленная ассоциативная память, теория адаптивного резонанса, когнитроны и неокогнитроны. Для каждой рассматриваемой сети дается описание ее архитектуры, алгоритмов обучения, анализируются проблемы емкости и устойчивости сети.
Специальности: Программист
ISBN: 978-5-9556-0049-9
Теги: .net, алгоритмы, АРТ, выходной слой, искусственная жизнь, искусственные нейронные сети, исследования, когнитрон, компоненты, локальные минимумы, нейронные сети, обучение, персептрон, поиск, процедуры, сеть хопфилда, синапс, сходимость, фотографии, целевая функция
Предварительные курсы
План занятий
Занятие
Заголовок <<
Дата изучения
Лекция 1
36 минут
Основы искусственных нейронных сетей
В лекции рассматриваются общие положения теории искусственных нейронных сетей. Описана структура однослойных и многослойных нейронных сетей, введено понятие обучения нейронной сети и дана классификация алгоритмов обучения.
Оглавление
-
Лекция 2
37 минут
Персептроны. Представимость и разделимость
В лекции дается определение персептрона, рассматривается его архитектура. Описывается класс задач, решаемых с помощью персептрона, доказывается, какие задачи невозможно решить с его помощью.
Оглавление
-
Лекция 3
33 минуты
Персептроны. Обучение персептрона
В лекции рассматриваются алгоритм обучения персептрона, вопросы сходимости алгоритма обучения и подбора количественных характеристик весовых коэффициентов. Исследуются многослойные персептроны и возможности их обучения.
Оглавление
-
Лекция 4
47 минут
Процедура обратного распространения (описание алгоритма)
В лекции рассматривается архитектура многослойного обобщенного персептрона, описывается процедура обратного распространения - алгоритм обучения многослойного персептрона с учителем.
Оглавление
-
Лекция 5
32 минуты
Процедура обратного распространения (анализ алгоритма)
В лекции анализируются слабые места алгоритма обратного распространения и предлагаются методы решения некоторых связанных с этим проблем.
Оглавление
-
Лекция 6
53 минуты
Сети встречного распространения
В лекции изложены архитектура, функционирование и методы обучения сетей встречного распространения. В качестве примера использования данной сети рассматриваются методы сжатия данных.
Оглавление
-
Лекция 7
45 минут
Стохастические методы обучения нейронных сетей
В лекции дается обзор основных стохастических методов, используемых для обучения нейронных сетей: метод отжига металла, больцмановское обучение, обучение Коши, метод искусственной теплоемкости.
Оглавление
-
Лекция 8
41 минута
Нейронные сети Хопфилда и Хэмминга
В лекции рассматривается архитектура сети Хопфилда и ее модификация - сеть Хэмминга, затрагиваются вопросы устойчивости сети Хопфилда. В заключении лекции рассматриваются понятие ассоциативности памяти и задача распознавания образов.
Оглавление
-
Лекция 9
43 минуты
Обобщения и применения модели Хопфилда
В лекции рассматриваются вероятностные обобщения модели Хопфилда и статистическая машина. Описывается аналого-цифровой преобразователь - как модель сети с обратным распределением. В качестве примера приводится представление информации в сети Хопфилда, решающей задачу коммивояжера.
Оглавление
-
Лекция 10
44 минуты
Двунаправленная ассоциативная память
В лекции рассматриваются архитектура и принципы работы нейронной сети ДАП. Затронуты вопросы емкости данной сети. Дается обзор некоторых модификаций этой сети.
Оглавление
-
Лекция 11
40 минут
Адаптивная резонансная теория. Архитектура
В лекции рассматривается проблема стабильности—пластичности при распознавании образов. Изучаются нейросетевые архитектуры AРT.
Оглавление
-
Лекция 12
50 минут
Теория адаптивного резонанса. Реализация
В лекции рассматривается процесс функционирования АРТ. Приводится пример обучения сети АРТ. Обсуждаются основные характеристики АРТ. Дается обзор модификаций сети АРТ.
Оглавление
-
Лекция 14
24 минуты
Неокогнитрон
В лекции рассматривается архитектура, процедура обучения и функционирования неокогнитрона. Отмечается его сходство и отличие от когнитрона.
Оглавление
-
Лекция 15
37 минут
Алгоритмы обучения
В данной лекции рассматриваются различные методы обучения нейронных сетей. Некоторые из этих методов частично приводились на предыдущих лекциях, но отмечены снова для создания у слушателей целостного представления об изучаемой области.
Оглавление
-